Synthesis of Optically Active β-Lactams by the Photolytic Reaction of Imines with Optically Active Chromium Carbene Complexes

Louis S, Hegedus,* Rene Imwinkelried, Marie Alarid-Sargent, Dalimil Dvorak, and Yoshitaka Satoh
Contribution from the Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523. Received June 26, 1989

Abstract

Optically active chromium carbene complexes utilizing (S)-valine- and (R)-phenylglycine-derived chiral auxillaries were synthesized and subjected to photolytic reaction with a number of imines. Optically active β-lactams were produced in good to excellent chemical yield and with high diastereoisomeric excess. Procedures for removal of the chiral auxilliary to produce the optically active free amino β-lactams were developed.

Recent research in these laboratories has centered on the development of efficient approaches to β-lactams of biological interest utilizing the photolytic reaction between chromium carbene complexes and imines (eq 1) developed several years ago. ${ }^{1}$ Initial

(1)
studies involved alkoxycarbene complexes ($\mathrm{X}=\mathrm{Me}, \mathrm{Ph} ; \mathrm{Y}=$ OMe), and although a large number of β-lactams were prepared by this method, they all lacked the substituents required for biological activity ($\mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{NHCOR}$). ${ }^{2}$ Subsequently, an efficient synthesis of a minocarbenes ($\mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{NR}_{2}$) was developed, ${ }^{3}$ and these complexes were successfully used in the synthesis of the desired classes of β-lactams. ${ }^{4}$ However, most biologically active β-lactams are also optically active, and asymmetric induction in this new β-lactam synthesis is the problem addressed in this paper.

Previous studies ${ }^{12}$ using imines derived from optically active benzylamines as substrates resulted in only low to modest ($15-60 \%$ de) asymmetric induction with the (methoxy)(methyl)carbene complex, and none at all with the (N, N-dibenzylamino)(methylene)chromium complex. ${ }^{5}$ In contrast, when the rigid, chiral, cyclic optically active thiazoline $(S)(+)$-methyl- 5,5 -dimethyl$4 \mathrm{H}-1,3$-thiazoline was used as the imine substrate, the process was virtually diastereospecific, with both alkoxy ${ }^{1}$ and amino ${ }^{4}$ carbene complexes. Since chiral centers on the imine substrate were not generally effective in inducing asymmetry in this process, other sites for the introduction of a chiral auxilliary were sought. The synthesis of optically active pentacarbonyl(aminocarbene)chromium complexes and their reactions with imines to produce optically active β-lactams are described below.

Results and Discussion

Readily available optically active α-amino acids are commonly used as sources of chiral auxilliaries in asymmetric synthesis. ${ }^{6}$ Optically active formamides were required to produce the desired chromium aminocarbene complexes, and these were accessible by conventional methods. Initial studies used proline-derived

[^0]formamides, and the results of these studies are summarized in eq 2.

Carbenes $\mathbf{2 a}$ and $\mathbf{2 b}$ were prepared in reasonable (unoptimized) yield by reaction of the chromium pentacarbonyl dianion with the appropriate Vilsmeier's salt of the proline-derived formamide. ${ }^{4,7}$ Photolytic reaction of these carbenes with 5,6 -dihydro- $4 \mathrm{H}-1,3$ oxazine gave the corresponding bicyclic β-lactams 3a and 3b in good chemical yield, as a single trans geometrical isomer. However, the diastereoselectivity of this process was not only unacceptably low, it was remarkably insensitive to the steric bulk of the chiral auxilliary, This, coupled with the fact that chemical transformation of the prolinol fragment to the requisite free amino group would be difficult, led to the search for a more effective chiral auxilliary.

The next system examined was that based on N-formyl acetonides of (R)-phenylglycinol and (S)-valinol. The requisite optically active carbene complexes $\mathbf{4 a}$ and $4 b$ were readily prepared in high yield by a previously developed procedure ${ }^{3}$ from the formamides, $\mathrm{Na}_{2} \mathrm{Cr}(\mathrm{CO})_{5}$, and trimethylsilyl chloride. The results of the reactions of these two carbene complexes with a variety of representative simple imines are summarized in eq 3 and 4 and Tables I and 11. Several important features were noted. The chemical yields obtained with complex 4a were uniformly better than those with $\mathbf{4 b}$, and with the exception of $\mathbf{5 e}$, imines that exist as cyclic trimers in solution (5a, 5d, 5e) did not convert to β lactams with $\mathbf{4 b}$, while the reactions of $\mathbf{4 a}$ with those substrates proceeded in good yield. The geometry (e.g., cis, trans) of the
(7) These preliminary studies were carried out prior to development of the more efficient trimethylsilyl chloride route to amino carbene complexes reporied in ref 3 .
(8) Floyd, D. M.; Fritz, A. W.; Phisec, V.; Weaver, E. R.; Cimarusti, C. M. J. Org. Chem. 1982, 47, 5160. The value for the cis compound reported in this paper, $+34^{\circ}$, was erroneous. We thank Dr. Floyd for providing the correct value and samples of authentic cis and trans compounds for direct comparison with those synthesized herein.

Table I. Reaction of Complex $4 \mathbf{a}$ with Imines (Equation 3)

${ }^{a}$ Reported yields are those of isolated, purified material. ${ }^{6}$ Diastereoisomeric excess (de) are those for crude reaction products, as assessed by high-field proton and carbon NMR spectroscopy and analytical HPLC.

Table II. Reaction of Complex 4b with Imines (Equation 4)

${ }^{a}$ Reported yields are those of isolated, purified material. ${ }^{b}$ Diastereoisomeric excess (de) are those for crude reaction products, as assessed by high-field proton and carbon NMR spectroscopy and analytical HPLC.
β-lactams formed from both complexes strictly paralleled that observed with achiral carbenes, ${ }^{4,5}$ with cyclic imines and imidates giving exclusively trans β-lactams, and the N-benzylimine of acetaldehyde giving a cis/trans mixture in which trans predominated. The diastereoselectivity observed with both complexes was comparable and excellent. The worst cases were those with symmetrically substituted imines $\mathbf{5 a}$ and $\mathbf{5 b}\left(\mathbf{R}^{2}=\mathbf{R}^{\mathbf{3}}=\mathrm{H}\right.$ or Me) for which an easily separated 85:15 mixture of diastereoisomers was obtained. With $\mathbf{5 c}$, a mixture of cis and trans geometrical isomers was obtained, but each of these was a single diastereoisomer, indicating that stereocontrol at the position adjacent to the chiral auxilliary was virtually complete. With imines $\mathbf{5 d} \mathbf{- 5 g}$, only a single diastereoisomer, as determined by high-field ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and analytical HPLC of the crude reaction mixtures, was obtained with both complexes $\mathbf{4 a}$ and $\mathbf{4 b}$, Thus, with all unsymmetrically substituted imines studied, complexes $4 a$ and $4 b$ produced good to excellent chemical yields with very high diastereoselectivity. Further, the absolute configuration of the newly formed chiral center adjacent to the β-lactam carbonyl group was the same as that of the chiral auxilliary $(R \rightarrow R, S$ $\rightarrow S$) (see proof below), while the absolute configuration of the β-carbon was set by the intrinsic cis/trans specificity of the β -lactam-forming process.

Removal of the chiral auxilliary from β-lactams 6 was efficiently accomplished by a two-step process involving hydrolysis of the acetonide and hydrogenolysis of the benzylamine (eq 5). In this

[^1]
manner good yields of free amino β-lactams 8 were obtained. Since these were relatively unstable, they were immediately converted to their t-BOC derivatives for further characterization and storage. Only carbapenam 6d, which decomposed during removal of the chiral auxilliary, was unavailable by this procedure. Since diastereoisomerically pure β-lactams $\mathbf{6 a - g}$ were used, enantiomerically pure β-lactams $8 \mathrm{a}-\mathrm{c}, \mathrm{e}-\mathrm{g}$ and $9 \mathrm{a}-\mathrm{c}, \mathrm{e}-\mathrm{g}$ were obtained (see below).

Cleavage of the isopropyl-derived chiral auxilliary involved hydrolysis followed by oxidative cleavage of the amino alcohol (eq 6). This cleavage was less efficient than the hydrogenolytic

cleavage (eq 5) in that the yields were lower and the cleavage products more difficult to purify. Thus, the phenylglycine-derived chiral carbene complex 4a was the complex of choice for the synthesis of simple optically active β-lactams in high chemical and optical yield.

The absolute stereochemistry of the β-lactam-forming reaction (eq 3 and 4) was determined by the conversion of $11 \mathbf{c}$ and $11 \mathbf{c}^{\prime}$ to compounds of known absolute configuration (eq 7 and 8). In

these cases, the absolute configuration of the chiral auxilliary was translated to the β-lactam center adjacent to it. Further, all compounds 9 had equal but opposite rotations to the corresponding compounds 11, as expected from the enantiomeric relationship of the chiral auxilliaries used in their synthesis.

In a preliminary effort to extend this methodology to more complex systems, thiazine 12^{10} (racemic, single diastereoisomer) was allowed to react with complex $\mathbf{4 b}$ to give cepham 13 in good yield (eq 9). High asymmetric induction was again observed as

evidenced by 13 being a 1:1 mixture of only two diastereoisomers,

[^2]due to the use of racemic 12, (Had asymmetric induction been poor, additional diastereoisomers would have been formed.) Studies with more complex systems are continuing using chiral carbene 4 a and its enantiomer, because of the ease of removal of that chiral auxilliary.

Recent mechanistic studies ${ }^{11}$ of the photoreaction between imines and chromium carbene complexes have suggested that the reaction involves the photogeneration of metal-bound ketenes, which then react with imines to give β-lactams, analogous to the Staudinger reaction, ${ }^{12}$ Recently, the reactions of optically active amidoketenes generated in situ from the corresponding α-amido acid chlorides and triethylamine, with imines ${ }^{13-15}$ and with optically active imines, ${ }^{16,17}$ have been used to produce optically active β-lactams, with excellent asymmetric induction in most cases. In contrast to the studies reported here, these studies have uniformly utilized imines of aryl or cinnamyl aldehydes as substrates, and in all but one case ${ }^{15}$ very high cis selectivity was observed, along with good to excellent diastereoselectivity. The most efficient of these systems was based on an optically active oxazolidone, ${ }^{14}$ which added to the N -benzyl aldimine of m -methoxycinnamaldehyde to give only the cis β-lactam, with a diastereoselectivity of $92 ; 8$ (eq 10). For comparison, this same aldimine was subjected to

photolytic reaction with chromium carbene complex $4 \mathbf{a}^{\prime}$ (S enantiomer of 4a) (eq 11), This process was remarkably nonspecific,

particularly in light of the selectivity observed above with nonconjugated imines. Although the cis β-lactam was the major product, it was formed nonselectively, while a single diastereoisomer of the minor trans compound was obtained, ${ }^{18}$ If free ketenes are involved in both of these processes, and if the origins of asymmetric induction in ketene-imine reactions are indeed those recently advanced, ${ }^{13}$ the small differences in structure between the putative ketenes in eq 10 and 11 have a profound effect on the stereoselectivity of the process. Alternatively, the chromium carbene derived ketene is likely to be metal-bound, not free, which may account for the large differences in stereoselectivity observed, Studies addressing the role of ketenes in these processes and directed toward increasing the selectivity of reactions with conjugated imines are in progress.

Experimental Section

General Procedure, Melting points were taken on a Mel-Temp apparatus and are uncorrected. A Bruker IBM-200 NMR spectrometer was used for the $200-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra. The $270-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR
(11) Hegedus, L. S.; deWeck, G.; D'Andrea, S. J. Am. Chem. Soc. 1988, 110, 2122.
(12) For a review of ketene-imine cycloadditions to produce β-lactams, see: Holden, K. G. Total Synthesis of Penicillans, Cephalosporins, and Their Nuclear Analogs. In Chemistry and Biology of β-Lactam Antibiotics; Morin, R, B., Gorman, M., Eds.; Academic: New York, 1982; Vol. 2, pp 114-131
(13) Cooper, R. D. G.; Daugherty, B. W.; Boyd, D. B. Pure Appl. Chem. 1987, 59, 485.
(14) Evans, D. A.; Sjogren, E. B. Tetrahedron Lett. 1985, 26, 3783, 3787.
(15) 1 kota , N.; Hanaki, A. Heterocycles 1984, 22, 2227.
(16) Evans, D. A.; Williams, J. M. Tetrahedron Lett. 1988, 29, 5065.
(17) Ojima, 1.; Chen, H.-C.; Qiu, X. Tetrahedron 1988, 44, 5307.
(18) The minor trans isomer in the studies described in ref 15 was also obtained as a single diastereoisomer, while the major cis isomer was formed with $70-90 \%$ de.
and the $67-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker IBM-270 NMR spectrometer. NMR spectra were recorded in CDCl_{3}, and chemical shifts are given in ppm relative to $\mathrm{Me}_{4} \mathrm{Si}\left(0 \mathrm{ppm},{ }^{1} \mathrm{H}\right)$ or $\mathrm{CDCl}_{3}(77$ $\mathrm{ppm},{ }^{13} \mathrm{C}$) unless otherwise specified. IR spectra were recorded on a Beckmann 4240 spectrophotometer. Electron impact (EI) and chemical ionization (CI) mass spectra were obtained on a V.G. Micromass Ltd. Model 16F spectrometer. Optical rotations were obtained on a PerkinElmer 24 polarimeter at a wavelength of 589 nm (sodium D line) by a $1.0-\mathrm{dm}$ cell with a total volume of 1 mL . Specific rotation, $[\alpha]_{\mathrm{D}}$, was reported in degrees per decimeter at the specified temperature and the concentration (c) given in grams per 100 mL in the specified solvent. Ultraviolet irradiation of the reaction mixtures was carried out in $20-\mathrm{mL}$ Pyrex test tubes or $100-\mathrm{mL}$ Pyrex pressure tubes placed at a distance of 10 cm from a Conrad-Hanovia 7825 medium-pressure mercury lamp operating at 450 W , which was placed in a water-cooled immersion well. A Conrad-Hanovia 7830-C power supply was used.

For the purification of crude reaction mixtures, radial-layer (Chromatotron Model 7924) and column chromatographic techniques were applied in most cases. Merck silica gel 60 PF (for radial-layer chromatography) and Merck silica gel (230-400 mesh) or Alfa activated, neutral aluminum oxide (for column chromatography) were used as stationary phases.

High-performance liquid chromatograms were obtained on a Waters RCM-100 radial compression column [Waters Radial Pak liquid chromatography cartridge, silica gel ($8-\mathrm{mm}$ i.d.)] equipped with Model 6000A solvent delivery system and Model R-400 refractive index detector.

Elemental analyses were performed by M-H-W Laboratories, Phoenix, AZ.

Materials. Tetrahydrofuran (Fisher, reagent grade) and diethyl ether (ASP, analytical reagent) were predried over CaH_{2} and distilled from benzophenone ketyl under a nitrogen atmosphere just prior to use. Hexane (technical grade) was distilled at atmospheric pressure. Ethyl acetate (technical grade) was distilled over CaH_{2}. Methylene chloride was distilled over CaH_{2} or filtered through aluminum oxide (Baker Analyzed, $5 \mathrm{~g} / 100 \mathrm{~mL}$). Acetonitrile (Fisher) was distilled over CaH_{2} and stored over $4-\AA$ molecular sieves. Methanol (Fisher) was dried over Mg and distilled.

Chromium hexacarbonyl (Pressure Chemical), (S)-proline (Sigma), (S)-2,3-diaminopropionic acid (Calbiochem), (R)- and (S)-phenylglycine (Aldrich), and (S)-valine (Aldrich) were obtained from commercial suppliers and used without further purification. ($2 S$)- N -formyl-2(methoxymethyl)pyrrolidine (1a) ${ }^{19}$ and (5S)- and (5R)- N -formyl-2,2-dimethyl-5-phenyl-1,3-oxazolidine ${ }^{3}$ were prepared by literature procedures.
(2S)- \mathbf{N}-Formyl-2-(tert-butoxymethyl)pyrrolldine (1b), N -Formylprolinol ${ }^{19}(3.38 \mathrm{~g}, 26.0 \mathrm{mmol})$ was taken in a $300-\mathrm{mL}$ glass pressure vessel equipped with a magnetic stirring bar and a rubber stopper and dissolved in 50 mL of dry p-dioxane. To this was added a few drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and ca. 20 mL of isobutene; the top of the flask was then secured by a rubber stopper and copper wires. Boron trifluoride etherate ($9.7 \mathrm{~mL}, 79 \mathrm{mmol}$) was forcibly introduced via a syringe by inserting the needle through the gap between the rim of the bottle and the rubber stopper. The plunger should be held tightly since the internal pressure of the vessel can be very high. The reaction was allowed to proceed for 3 h at room temperature. After the internal pressure of the bottle had been released by forcing a syringe needle through the same gap, contents of the flask was poured into 50 mL of water. The organic phase was separated, and the aqueous layer was extracted three times with ether. The organic layer was washed with aqueous NaHCO_{3} and then with saturated aqueous NaCl and dried over magnesium sulfate. Removal of the solvent and subsequent distillation of the remaining liquid gave 2.20 g (45%) of pure tert-butyl ether 1 lb as a colorless oil: bp 140 ${ }^{\circ} \mathrm{C}(1 \mathrm{mmHg})$ (bath temperature); ${ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 1.15(\mathrm{~s}, 9$, O-t-Bu), 1.6-2.5 (m, 4), 3.1-3.8 (m, 5), $8.15(\mathrm{~s}, \mathrm{CHO}$, the minor rotamer), 8.26 (s, CHO, the major rotamer). This material was used without further purification.

Pentacarbonyly[(2S)-2-(methoxymethyl)pyrrolidyl]carbene]chromlum (2a), The formamide $1 \mathrm{a}(0.54 \mathrm{~g}, 3.50 \mathrm{mmol})$ was dissolved in 40 mL of dry THF and treated with $0.98 \mathrm{~g}(7.70 \mathrm{mmol})$ of oxalyl chloride. Instantaneous evolution of a gas was observed. After 2 h , the resultant mixture was evaporated first at water aspirator pressure through a calcium chloride tube (to protect from moisture) and then under an oil pump vacuum. This was redissolved in 30 mL of THF and cooled to $-78^{\circ} \mathrm{C}$. Disodium pentacarbonylchromium ($48 \mathrm{~mL}, 0.093 \mathrm{~mL}$ in THF, 4.60 mmol) was then introduced by means of a cannula. The cooling bath was removed and the mixture was stirred at room temperature for 2 h . Silica gel (3 g) was added and the mixture was evaporated to dryness. The

[^3]silica-impregnated sample thus obtained was purified by column chromatography (silica gel, hexane/methylene chloride) to give 0.60 g of a yellow oil, which solidified upon storage in a freezer: $\mathrm{mp} 40-41^{\circ} \mathrm{C}$ (open capillary); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta 1.9-2.3$ (m, 4), 3.2-3.5 (m, 2), $3.35\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.81(\mathrm{~m}, 1, \mathrm{NCH}), 4.08\left(\mathrm{~m}, 2, \mathrm{NCH}_{2}\right), 11.54$ (s, 1, carbene proton); 1R $\left(\mathrm{CHCl}_{3}\right) \nu 2055,1975,1925 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{CrNO}_{6}: \mathrm{C}, 45.15 ; \mathrm{H}, 4.10 ; \mathrm{N}, 4.39$. Found: $\mathrm{C}, 45.30$; H, 4.26; N, 4.22 .

Pentacarbonyl [[(2S)-2-(tert-Butoxymethyl)pyrrolidyl]carbene)chromium (2b). In a manner similar to that used for 2a, the title compound was obtained in 45% yield: $\mathrm{mp} 52-53^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.16$ (s, 9, O-t-Bu), 1.9-2.4 (m, 4), 3,3-3,5 (m, 2), 3,78 (m, 1, NCH), 4.06 (m, 2), $11.00\left(\mathrm{~s}, 1\right.$, carbene proton); $1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) \nu 2060,1980,1930$ cm^{-1}. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{CrNO}_{6}: \mathrm{C}, 49.86 ; \mathrm{H}, 5.30 ; \mathrm{N}, 3.88$. Found: C, 49.99; H, 5.25; N, 3.93.

7-[2'-(tert-Butoxymethyl)pyrrolidyl]oxacepham (3b), The carbene complex 1b ($87 \mathrm{mg}, 0.22 \mathrm{mmol}$) was placed in a Pyrex test tube and dissolved in 10 mL of dry acetonitrile. This was degassed by evacua-tion-refilling cycles (three times). After the atmosphere was secured under argon, $18 \mathrm{mg}(0.22 \mathrm{mmol})$ of the 1,3 -oxazine ${ }^{20}$ was added and the reaction mixture was placed in a constant-temperature bath kept at $\mathbf{- 2 0}$ ${ }^{\circ} \mathrm{C}$ and irradiated for 16 h . Acetonitrile was removed under reduced pressure, and the residue was dissolved in a hexane/ether mixture. The mixture was irradiated with direct sunlight while exposed to air in order to remove chromium-containing organic materials. After the supernatant became colorless, the solids were removed by filtration, and the filtrate was concentrated. A crude ${ }^{1} \mathrm{H}$ NMR spectrum showed that two diastereoisomeric β-lactams were formed in a ratio of $83 ; 17$ (67% de). This was purified by column chromatography (silica gel, hexane/ether) to give a colorless oil ($50 \mathrm{mg}, 82 \%$). Separation of these two diastereomers was unsuccessful. ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.14(\mathrm{~s}, 9, \mathrm{O}-t-\mathrm{Bu}), 1.4,1.7,1.8$, $2.6,3.0,3.1,3.3,3.6,3.9,4.1$ ($\mathrm{m}, 14$), 4.87 ($\mathrm{s}, \mathrm{NCHO}$, minor isomer), 4.99 ($\mathrm{s}, \mathrm{NCHO}$, major isomer); IR $1755 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 63.80 ; \mathrm{H}, 9.28 ; \mathrm{N}, 9.20$. Found: C, $63.67 ; \mathrm{H}, 9.36 ; \mathrm{N}$, 9.18.

Pentacarbonyl(5 ($)$-2,2-Dimethyl-5-phenyl-1,3-azoxacyclopentyl)methylene)chromium (4a). This complex was prepared by the previously reported ${ }^{3}$ procedure on a $20-\mathrm{mmol}$ scale in $80-90 \%$ yield, using 1.2 equiv of $\mathrm{Na}_{2} \mathrm{Cr}(\mathrm{CO})_{5}$ rather than the reported 2 equiv of this reagent.

General Procedure for the Preparation of β-Azetidinones $\mathbf{6 b}, \mathbf{6 c}, \mathbf{6 c}^{\prime}$, 6 f , and 6 g . The chromium carbene complex (1.00 mmol) and the corresponding imine or imidate (1.05 mmol) were added to a CO -saturated solution of $\mathrm{Et}_{2} \mathrm{O}(\sim 22 \mathrm{~mL})$ in a $25-\mathrm{mL}$ pressure tube equipped with a Matheson/Whitey Brand 100 psi pressure head and a pressure release valve. The solution was pressurized with CO to $\sim 90 \mathrm{psi}$ and then the pressure was released, three times. Finally, the solution was pressurized to 60 psi CO and carefully transported, using a protective shield, to an irradiation box and exposed to a 450-W UV lamp for 24 h . The reaction mixture turned from bright yellow to pale yellow with a white solid at the bottom of the tube. The progress of the reaction was monitored by use of analytical TLC (silica gel). After complete consumption of the carbene, the solvent was evaporated, This mixture was taken up in ~ 20 mL of MeOH and placed in the freezer overnight. The following day, the solvent and crude product were removed by decanting or pipeting and then rinsing (MeOH) them away from the $\mathrm{Cr}(\mathrm{CO})_{6}$. Normal recovery of the $\mathrm{Cr}(\mathrm{CO})_{6}$ ranged from 0.58 to $0.62 \mathrm{mmol}(127-136 \mathrm{mg}=58-62 \%)$. The solvent was removed from the crude product to leave a yellow to green to brown oil ($0.95-1.00 \mathrm{mmol}=95-100 \%$ crude yield). This change in color was attributed to the oxidation of residual chromium species, The crude product was purified by chromatography [silica gel, hexane/EtOAc (4:1)] to yield $60-90 \%$ of the pure β-azetidinone product (a clear, colorless oil).

Synthesis of 1 -Benzyl-4,4-dimethyl- β-azetidinone (6 b), The reaction of carbene complex $4 \mathrm{a}(381 \mathrm{mg}, 1.00 \mathrm{mmol}$) and the N-benzyl acetone imine 5 b ($155 \mathrm{mg}, 1.05 \mathrm{mmol}$) in 22 mL of diethyl ether at 60 psi CO gave 310 mg (85%) of a green oil after 24 h of irradiation. Analysis of the crude product by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and analytical HPLC revealed an $85: 15$ mixture of diastereoisomers. The crude product was purified by preparative layer chromatography (silica gel) eluting with hexane/EtOAc (1:1) to yield $248 \mathrm{mg}(0.68 \mathrm{mmol}=68 \%)$ of the major diastereoisomer (a white solid) and $40 \mathrm{mg}(0.11 \mathrm{mmol}=11 \%$) of the minor diastereoisomer (a colorless oil) for a total yield of $288 \mathrm{mg}(0.79$ $\mathrm{mmol}=79 \%$). Major diastereoisomer 6b: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 0.59$ $\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right), 1,17\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.81(\mathrm{~s}$, $1, \mathrm{CHC}=\mathrm{O}), 3.81(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 3.85\left(\mathrm{~m}, 1, \mathrm{OCH}_{2} \mathrm{CHN}\right)$, $4.34\left(\mathrm{~m}, 1, \mathrm{OCH}_{2} \mathrm{CHN}\right), 4.40(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1, \mathrm{CHPh}), 4.89(\mathrm{dd}, J$ $\left.=4.7,8.2 \mathrm{~Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}\right), 6.82(\mathrm{~m}, 2, \mathrm{ArH}), 7.14(\mathrm{~m}, 3, \mathrm{ArH}), 7.28$
(20) lto, Y.; Inubishi, Y.; Zenbayashi, M.; Tomita, S.; Saegusa, T. J. Am. Chem. Soc. 1973, 95, 4448.
(m, 3, ArH), $7.46(\mathrm{~m}, 2, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(67 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0$, $21.8,24.5,28.3,42.5,61.4,62.4,72.6,73.0,95.9,126.9,127.1,127.9$, 128.0, 128.3, 128.7, 136.8, 144.4, 165.5; IR (neat) $\nu 1744(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Minor diastereoisomer: ${ }^{1} \mathrm{H} \operatorname{NMR}(270 \mathrm{MHz}) \delta 0.63\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 0.68$ (s, 3, CH_{3}), $1.59\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.68\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.77(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O}), 3.84$ (dd, $\left.J=5.8,8.1 \mathrm{~Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}\right), 3.98(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1$, $\mathrm{OCH}_{2} \mathrm{CHN}$), $4.07(\mathrm{~d}, J=15.3 \mathrm{~Hz}, \mathrm{l}, \mathrm{C} H \mathrm{Ph}), 4.27(\mathrm{~d}, J=15.3 \mathrm{~Hz}, \mathrm{l}$, $\mathrm{CHPh}), 4.32\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}\right), 7.16-7.38(\mathrm{~m}, 10, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($67 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,22.1,23.9,27.9,42.5,62.6,68.8$, $71.8,75.8,96.7,127.4,127.5,127.8,128.0,128.1,128,2,128.4,128.5$, 128.8, 137.4, 142.2, 165.0.

Synthesis of 1-Benzyl-4-methyl- β-azetidinone ($6 c$). The reaction of carbene complex 4 a ($191 \mathrm{mg}, 0.50 \mathrm{mmol}$) and the benzylethylideneamine $5 \mathrm{c}(73.3 \mathrm{mg}, 0.55 \mathrm{mmol})$ in 22 mL of diethyl ether at 60 psi carbon monoxide gave $167 \mathrm{mg}(0.50 \mathrm{mmol}, 100 \%)$ of a gold oil after 24 h of irradiation. Analysis of the crude product by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy showed the product to be a $3: 2$ mixture of trans and cis azetidinones, each of which was a single diastereoisomer. The product was purified by preparative layer chromatography (silica gel) eluting with hexane/EtOAc ($1: 1$) to yield $68 \mathrm{mg}(0.20 \mathrm{mmol}, 41 \%)$ of trans- 6 c and $34 \mathrm{mg}(0.10 \mathrm{mmol}, 20 \%)$ of cis-6c' for a total yield of $102 \mathrm{mg}(0.31$ mmol, 61%). trans-6c: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.00(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3$, $\left.\mathrm{CH}_{3}\right), 1.45\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.46\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 2.88(\mathrm{dq}, J=2.3,6.1 \mathrm{~Hz}, \mathrm{l}$, $\mathrm{CHCHC}=\mathrm{O}$), 3.67 (dd, $J=5.3,7.8 \mathrm{~Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}$), 3.71 (d, $J=$ $2.3 \mathrm{~Hz}, 1, \mathrm{CHC}=\mathrm{O}), 3.90(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 4.27(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}$), 4.33 (dd, $J=5.3,7.8 \mathrm{~Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}$), 4.42 (d, $J=15.2 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 6.97(\mathrm{~m}, 2, \mathrm{ArH}), 7.18-7.31(\mathrm{~m}, 8, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($67 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.7,23.5,27.8,43.8,54.2,61.9,71.9,72.6$, 96.0, 127.3, 127.41, 128.2, 128.4, 128.6, 135.8, 143.0, 167.8; IR $\left(\mathrm{CHCl}_{3}\right)$ $\nu 1738(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. cis-6c': ${ }^{1} \mathrm{H} \operatorname{NMR}(270 \mathrm{MHz}) \delta 0.63(\mathrm{~d}, J=$ $\left.6.4 \mathrm{~Hz}, 3, \mathrm{CH}_{3}\right), 1.36\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.41\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.45(\mathrm{dq}, J=4.7$, $6.4 \mathrm{~Hz}, 1, \mathrm{CHCHC}=0$), 3.84 (dd, $J=4.7,8.3 \mathrm{~Hz}, \mathrm{l}, \mathrm{OCH}_{2} \mathrm{CHN}$), 4.10 $(\mathrm{d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 4.23(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 4.25(\mathrm{~d}$, $J=4.7 \mathrm{~Hz}, 1, \mathrm{CHC}=\mathrm{O}), 4.35\left(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}\right), 4.81$ (dd, $\left.J=4.7,8.3 \mathrm{~Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}\right), 6.96(\mathrm{~m}, 2, \operatorname{ArH}), 7.19-7.38(\mathrm{~m}, 6$, ArH), $7.44(\mathrm{~m}, 2, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($67 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.6,21.5,28.1$, 44.4, 55.1, 61.9, 66.0, 72.4, 96.3, 127.1, 127.5, 128.1, 128.1, 128.5, 144.4, 166.6; IR $\left(\mathrm{CHCl}_{3}\right) \nu 1738(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Synthesis of trans-1-Benzyl-4-methoxy- β-azetidinone (6f). The reaction of carbene complex $4 \mathrm{a}(381 \mathrm{mg}, 1.00 \mathrm{mmol})$ and methyl N benzylformimidate $5 \mathrm{f}(156 \mathrm{mg}, 1.05 \mathrm{mmol})$ in 22 mL of $\mathrm{Et}_{2} \mathrm{O}$ at 60 psi CO gave $400 \mathrm{mg}(>100 \%)$ of a yellow oil after 24 h of irradiation. Analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and by analytical HPLC showed a single diastereoisomer, indicating a de of $\geq 97 \%$. The crude product was purified by radial-layer chromatography (Chromatotron, 2 mm , silica gel) using hexane/EtOAc (4:1) to yield $332 \mathrm{mg}(0.91 \mathrm{mmol}, 91 \%)$ of a colorless oil: ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}) \delta 1.35\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.38\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 2.97\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.58(\mathrm{dd}$, $\left.J=4.5,6.5 \mathrm{~Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}\right), 3.81(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1, \mathrm{CHC}=\mathrm{O}), 3.86$ (d, $J=15.1 \mathrm{~Hz}, 1, \mathrm{CHPh}), 3,91(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1, \mathrm{CHCHC}=0), 4.16$ (m, 2, OCH2CHN), $4.29(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CHPh}), 6.9(\mathrm{~m}, 2, \mathrm{ArH})$, $7.1(\mathrm{~m}, 8, \operatorname{ArH}) ;{ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 23,2,27.2,43.5,54.8,61,3,71,0$, $71.9,87.1,95.7,127.0,127.1,127.2,127.8,128.0,128,1,135.2,142,0$, 165.6; IR (neat) $\nu 1752(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Synthesis of trans-Oxacepham 6 g . The reaction of carbene complex 4a ($381 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 5,6 -dihydro- $4 \mathrm{H}-1,3$-oxazine ($5 \mathrm{~g} ; 90 \mathrm{mg}$, 1.05 mmol) in 22 mL of $\mathrm{Et}_{2} \mathrm{O}$ at 60 psi CO gave $\sim 360 \mathrm{mg}(>100 \%)$ of a yellow oil after 24 h of irradiation. Analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and by analytical HPLC showed a single diastereoisomer, indicating a de of $\geq 97 \%$. The crude product was purified by radial-layer chromatography (Chromatotron, 2 mm , silica gel) using hexane/EtOAc (4:1) to yield $288 \mathrm{mg}(0,95 \mathrm{mmol}$, 95%) of a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.34(\mathrm{~m}, 1$, ring CH$)$, 1.43 (s, 3, CH_{3}), $1.47\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.64$ (m, 1, ring CH), 2.71 (ddd, $J=$ $4.7,13.2,17 \mathrm{~Hz}, 1, \mathrm{NCHCHCHO}$), 3.32 (ddd, $J=2.0,12.2,13.7 \mathrm{~Hz}$, $1, \mathrm{OCHCHCHN}), 3.76\left(\mathrm{~m}, 2\right.$, ring CH and $\left.\mathrm{OCH}_{2} \mathrm{CHN}\right), 3.95(\mathrm{~m}, 1$, OCHCHCHN), 4,01 (s, 1, $\mathrm{CHC}=0$), $4,06(\mathrm{~s}, 1, \mathrm{CHCHC}=0), 4.25$ $\left(\mathrm{m}, 2, \mathrm{OCH}_{2} \mathrm{CHN}\right), 7.26-7.43(\mathrm{~m}, 5, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 23.2$, $23.3,27.2,36.8,62.2,64.6,71.7,73.2,83.0,95.6,127.3,127.9,128.0$, 141.9, 165.4; IR (neat) $\nu 1750(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

General Procedure for the Preparation of β-Azetidinones 6a, 6d, and 6e. The chromium carbene complex $4 \mathrm{a}(381 \mathrm{mg}, 1.00 \mathrm{mmol})$ and the corresponding imine trimer (0.35 mmol) were placed in a test tube (Pyrex test tube no. 9800) which was sealed with a rubber septum. The vessel was evacuated and purged with argon (four cycles) and $\sim 22 \mathrm{~mL}$ of dry $\mathrm{CH}_{3} \mathrm{CN}$ was then introduced via a cannula. The mixture was gently shaken until all of he contents were dissolved. The vessel was evacuated again and then purged with argon (four cycles). The tube was then placed into an irradiation box and exposed to a 450 -W UV lamp for 24 h. The reaction mixture turned from bright yellow to green or brown as
the reaction proceeded. The progress of the reaction was monitored by use of analytical TLC (silica gel). After complete consumption of the carbene, the solvent was evaporated and the residue was taken up in EtOAc. The mixture would then be placed on the roof top (sunlight), or placed in a light box, equipped with six 20-W Vitalite fluorescent lamps to air oxidize the chromium-containing byproduct(s). To accelerate the oxidation, after 2 or 3 h the mixture was filtered through Celite and from there on approximately once every 12 h until the oxidation was complete. The end point of the oxidation was indicated by a clear solution. Removal of the solvent on a rotatory evaporator gave the crude β-azetidinone, which was purified by chromatography [silica gel, hexane/EtOAc (4:1)].

Note: This second procedure for the preparation of β-azetidinones had to be used in the cases where the imine or imidate existed as a trimer. The trimers formed an imine-chromium complex when allowed to react in $\mathrm{Et}_{2} \mathrm{O}$ under a CO pressure.

Synthesis of 1 -Benzyl- β-azetidinone ($6 a$), The reaction of carbene complex 4 a ($191 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1,3,5-tribenzylhexahydro-s-triazine ($64 \mathrm{mg}, 0.18 \mathrm{mmol}$) in 22 mL of $\mathrm{CH}_{3} \mathrm{CN}$ gave 150 mg ($0.46 \mathrm{mmol}, 92 \%$) of a gold oil after 24 h of irradiation. Analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and by analytical HPLC show the product to be an $85: 15$ mixture of diastereoisomers. The crude product was purified by preparative-layer chromatography [silica gel, hexane/EtOAc (1:1)] to yield $94 \mathrm{mg}(0.29 \mathrm{mmol}, 58 \%)$ of the major diastereoisomer (a white solid) and $25 \mathrm{mg}(0.08 \mathrm{mmol}, 16 \%)$ of the minor diastereoisomer (a colorless oil) for a total yield of $119 \mathrm{mg}(0.37 \mathrm{mg}$, 74%). Major diastereoisomer 6a: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.38$ (s, 3, CH_{3}), $1.4 \mathrm{l}\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right), 2.37(\mathrm{dd}, J=2.8,5.7 \mathrm{~Hz}, \mathrm{l}, \mathrm{CHCHC}=\mathrm{O}), 2.90$ ($\mathrm{t}, J=5.7 \mathrm{~Hz}, 1, \mathrm{CHCHC}=0$), 3.63 (dd, $J=4.4,6.9 \mathrm{~Hz}, 1$, $\left.\mathrm{NCHCH}_{2} \mathrm{O}\right), 4.11(\mathrm{~s}, 2, \mathrm{CHPh}), 4.22(\mathrm{~m}, 3), 6.95(\mathrm{~m}, 2, \mathrm{ArH}), 7.11$ (m, 8, ArH); ${ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 23.8,27.7,45.6,45.9,61.9,64.8,72.4$, $96.2,127.4,127.5,128.1,128.4,128.6,135.4,142.9,168.6$; IR (neat) ν $1742(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} ; \mathrm{C}, 74.05 ; \mathrm{H}, 7.46$; N, 8.64. Found: C, 74.24; H, 7.18; N, 8.40. Minor diastereoisomer 6a: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.32\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.54\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 2.94(\mathrm{t}, J=$ $5.5 \mathrm{~Hz}, 1, \mathrm{CHCHC}=\mathrm{O}), 3.17(\mathrm{dd}, J=2.6,5.5 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{CHC}=\mathrm{O})$, $3.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1), 4.05-4.24(\mathrm{~m}, 4), 4.27(\mathrm{dd}, J=2.6,5.5 \mathrm{~Hz}, 1$, $\mathrm{CHC}=\mathrm{O}), 7.18(\mathrm{~m}, 2, \mathrm{ArH}), 7.30\left(\mathrm{~m}, 8\right.$, ArH) $;{ }^{13} \mathrm{C}$ NMR (67 MHz$)$ $\delta 22.7,28.1,43.8,45.7,64.2,64.9,72.4,96.3,127.7,127.9,128.0,128.2$, 128.3, 128.7, 135.5, 139.7, 167.3.

Synthesis of trans- β-Azetidinone ($\mathbf{6 d}$), The reaction of carbene complex 4 a ($381 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 4,5 -dihydro- 3 H -pyrrole (5 d ; 80 mg , 0.35 mmol) in 22 mL of acetonitrile gave $213 \mathrm{mg}(0.90 \mathrm{mmol}, 90 \%)$ of a brown oil after 24 h of irradiation. Analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and by analytical HPLC showed a single diastereoisomer, de $\geq 97 \%$. The product was purified by radial-layer chromatography (Chromatotron, 2 mm , silica gel) using hexane/EtOAc (4:1) to yield $213 \mathrm{mg}(0.75 \mathrm{mmol}, 75 \%)$ of a colorless solid: mp $\left.90-91^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+10.93^{\circ}(c) 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}) \delta 1.29(\mathrm{~m}, \mathrm{l}$, ring CH$), 1.35\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.79$ (m, 3, ring CH), $2.57(\mathrm{~m}, 1, \mathrm{NCH}), 2.97(\mathrm{dt}, J=2.2,6.2 \mathrm{~Hz}, 1$, $\mathrm{CHCHC}=\mathrm{O}$), $3.43(\mathrm{~m}, 1, \mathrm{NCH}), 3.63\left(\mathrm{~m}, 1, \mathrm{NCHCH}_{2} \mathrm{O}\right), 3.69(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}, 1, \mathrm{CHC}=\mathrm{O}), 4.20(\mathrm{~m}, 2, \mathrm{NCHCH} \mathrm{O}), 7.16-7.36(\mathrm{~m}, 5$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 23.6,27.6,28.7,29.1,44.9,59.3,63.1$, $71.1,72.1,95.9,127.2,127.3,128.2,142.9,176.3 ;$ IR $\left(\mathrm{CHCl}_{3}\right) \nu 1741$ (s, $\mathrm{C}=\mathrm{O}$) cm^{-1}. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 71.33 ; \mathrm{H}, 7.69 ; \mathrm{N}$, 9.79. Found: C, 71.10; H, 7.42; N, 9.98 .

Synthesis of trans- $\boldsymbol{\beta}$-Azetidinone ($\mathbf{6 e}$), The reaction of carbene complex $4 \mathrm{a}(381 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 2,3,4,5-tetrahydropyridine ($5 \mathrm{e} ; 87 \mathrm{mg}$, 0.35 mmol) in 22 mL of acetonitrile gave $300 \mathrm{mg}(1.00 \mathrm{mmol}, 100 \%)$ of a brown oil after 24 h of irradiation. Analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and by analytical HPLC showed a single diastereoisomer, de $\geq 97 \%$. The product was purified by radial-layer chromatography (Chromatotron, 2 mm , silica gel) using hexane/EtOAc ($4: 1$) to yield $272 \mathrm{mg}(0.91 \mathrm{mmol}, 91 \%)$ of a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 0.98(\mathrm{~m}, 1$, ring CH$), 1.18(\mathrm{~m}, 1$, ring CH$)$, $1.37\left(\mathrm{~s}, 6, \mathrm{CH}_{3}\right), 1.40(\mathrm{~m}, 2$, ring CH$), 1.63(\mathrm{~m}, 1$, ring CH$), 1.75(\mathrm{~m}$, 1 , ring CH), $2.34(\mathrm{dt}, J=5.2,12 \mathrm{~Hz}, 1, \mathrm{NCH}), 2.48(\mathrm{ddd}, J=1.7,4.4$, $10 \mathrm{~Hz}, 1, \mathrm{CHCHC=O}$), 3.61 (brd, $J=5.2 \mathrm{~Hz}, 1, \mathrm{NCH}$), 3.67 (dd, J $=5.0,7.2 \mathrm{~Hz}, 1, \mathrm{NCHCH} \mathrm{O}), 3.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1, \mathrm{CHC}=\mathrm{O}), 4.21$ (m, 2, NCHCH2O), 7.17-7.34 (m, 5, ArH); ${ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 22.1$, $23.6,24.2,27.2,29.4,38.4,54.8,62.4,72.2,73.4,95.9,127.5,128.2$, $142.8,165.6 ; 1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right)$ и $1727(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
(5S)- \mathbf{N}-Formyl-2,2-dimethyl-5-isopropyl-1,3-oxazolidine, To a solulion of $9.1 \mathrm{~g}(88 \mathrm{mmol})$ of 1 -valinol and $63 \mathrm{~mL}(85.8 \mathrm{mmol})$ of acetone in 300 mL of methylene chloride was added $34 \mathrm{~g}(282 \mathrm{mmol})$ of anhydrous MgSO_{4}, and the mixture was stirred overnight at room temperature. Filtration and removal of the solvent in vacuum gave the crude product: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 0.91\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.04\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.31\left(\mathrm{~s}, 3, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.44(\mathrm{~s}, 3$,
$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.57\left(\mathrm{~m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.10\left(\mathrm{~m}, 1, \mathrm{NCHCH}_{2} \mathrm{O}\right), 3.33(\mathrm{t}, \mathrm{J}$ $\left.=8 \mathrm{~Hz}, \mathrm{l}, \mathrm{NCHCH}_{2} \mathrm{O}\right), 3.93\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}\right)$. Crude (5S)- N -formyl-2,2-dimethyl- 5 -isopropyl-1,3-oxazolidine can be purified by distillation [$\mathrm{bp} 52-54^{\circ} \mathrm{C}(12 \mathrm{mmHg}$)], but purification did not influence the yield of the next step.

Crude product was dissolved in 300 mL of methylene chloride, and after cooling to $0^{\circ} \mathrm{C}, 14 \mathrm{~mL}(100 \mathrm{mmol})$ of the mixed anhydride of formic and pivalic acids was added dropwise. The cooling bath was removed and the reaction mixture was stirred overnight at room temperature. Methylene chloride was evaporated in vacuo and the residue was stirred with 150 mL of ether and 200 mL of 0.25 M NaOH for 1 h. Separation of the ether layer followed by drying over MgSO_{4}, solvent removal, and distillation gave 8.06 g (65%) of the product (bp 74-76 ${ }^{\circ} \mathrm{C}$ $(0.2 \mathrm{mmHg})]$ (mixture of two rotamers): ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz} \mathrm{)} \mathrm{\delta}$ $0.89-0.98\left(\mathrm{~m}, 6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.50\left(\mathrm{~s}, 1.5, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.56(\mathrm{~s}, 1.5, \mathrm{C}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.58\left(\mathrm{~s}, 1.5, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.62\left(\mathrm{~s}, 1.5, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.92(\mathrm{~m}, 0.5$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.27\left(\mathrm{~m}, 0.5, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.58(\mathrm{~m}, 0.5, \mathrm{NCHCH} 2 \mathrm{O})$, 3.85-4.05 (m, 2.5, $\mathrm{OCH}_{2} \mathrm{CHN}$), $8.27(\mathrm{~s}, 0.5 \mathrm{CHO}), 8.29(\mathrm{~s}, 0.5, \mathrm{CHO})$; ${ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 17.2,18.0,19.0,19.3,23.2,25.4,27.6,28.1,29.2$, $31.5,60.4,62.7,64.9,65.6,92.4,93.9,158.9,159.2 ;[\alpha]_{\mathrm{D}}=+1.38^{\circ}(\mathrm{c}$ $=11.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{C}, 63.13 ; \mathrm{H}, 10.01 ; \mathrm{N}$, 8.18. Found: C, $62.90 ; \mathrm{H}, 10.21 ; \mathrm{N}, 8.08$.

Preparation of Pentacarbonyl[5(S)-2,2-dimethyl-5-isopropyl-1,3azoxacyclopentyl)methylenejchromium (4b). The published procedure using 24.1 mmol of $\mathrm{Na}_{2} \mathrm{Cr}(\mathrm{CO})_{5}$ and $3.44 \mathrm{~g}(20.1 \mathrm{mmol})$ of the oxazolidine gave, after crystallization from 30 mL of n-hexane (cooling by dry ice/2-propanol mixture), $6.05 \mathrm{~g}\left(86.8 \%\right.$) of pure product: $\mathrm{mp} 84-85^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 0.95\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08(\mathrm{~d}, J$ $\left.=6.9 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.35\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.49\left(\mathrm{~s}, 3, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75$ $\left(\mathrm{m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.16-4.31\left(\mathrm{~m}, 3, \mathrm{OCH}_{2} \mathrm{CHN}\right), 11.24(\mathrm{~d}, J=1 \mathrm{~Hz}$, $1, \mathrm{Cr}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $(67 \mathrm{MHz}) \delta 15.8,19.3,25.7,26.8,30.1,63.4$, $67.8,100.9,217.3,223.8,253.6$, IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu 2040(\mathrm{~m}), 1960(\mathrm{~m})$, $1935(\mathrm{~s}), 1910(\mathrm{~s})(\mathrm{Cr}-\mathrm{CO}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}=-161.3^{\circ}\left(\mathrm{c}=1.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{CrNO}_{6}: \mathrm{C}, 48.42 ; \mathrm{H}, 4.93 ; \mathrm{N}, 4.03$. Found: C , 48.60; H, 5.12; N, 3.99.

Preparation of 1 -Benzyl-4,4-dimethyl- β-azetidinone (7b), The same procedure as was used for $\mathbf{6 b}$ was followed; starting with $1.042 \mathrm{~g}(3.00$ $\mathbf{m m o l}$) of the carbene complex $\mathbf{4 b}$ and $0.464 \mathrm{~g}(3.16 \mathrm{mmol})$ of imine $\mathbf{5 b}$ gave, after 36 h of irradiation of the usual isolation, 0.790 g of a crude product. Pure compound ($0.584 \mathrm{~g}, 59 \%$) was obtained for after chromatography [Chromatotron, silica gel, n-hexane/ether (2:1)] as an \sim 85:15 mixture of diastereoisomers. Crystallization from n-hexane gave pure major isomer. Attempts to separate the minor diastereoisomer from the mixture by chromatography failed. The diastereoisomer $7 \mathbf{b}: \mathrm{mp}$ $72-73{ }^{\circ} \mathrm{C}$ (n-hexane); ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.07\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.21$ $\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right), 1.23\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.26\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.62\left(\mathrm{~m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.71-3.92 (m, 3, $\left.\mathrm{NCHCH}_{2} \mathrm{O}\right), 3.80(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O}), 4.18(\mathrm{~d}, \mathrm{~J}=15.2$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.42\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.32(\mathrm{br} \mathrm{s}, 5, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 15.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 19.7\left(\mathrm{q}, \mathrm{CH}_{3}\right), 20.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.7$ $\left(\mathrm{q}, \mathrm{CH}_{3}\right), 24.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 28.4\left(\mathrm{q}, \mathrm{CH}_{3}\right), 32.1\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.9(\mathrm{t}$, $\left.\mathrm{NCHCH}_{2} \mathrm{O}\right), 62.6\left(\mathrm{~s}, \mathrm{CONC}\left(\mathrm{CH}_{3}\right)_{2}\right), 62.6(\mathrm{~d}, \mathrm{NCHCH} 2 \mathrm{O}), 64.2(\mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3(\mathrm{~d}, \mathrm{COCH}), 95.0\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.5(\mathrm{~d}, \mathrm{Ph}), 128.3(\mathrm{~d}$, $\mathrm{Ph}), 137.4$ (s, Ph), $165.9(\mathrm{~s}, \mathrm{CO})$; IR (film) $\nu 1740(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}$ $=-37.9^{\circ}\left(c=1.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 72.69$; $\mathrm{H}, 9.15 ; \mathrm{N}, 8.48$. Found: C, 72.86; H, 8.95; N, 8.54.

Preparation of 1 -Benzyl-4-methyl- β-azetidinone ($7 \mathrm{c}, 7 \mathrm{c}^{\prime}$), The above procedure was followed, using $1.080 \mathrm{~g}(3.11 \mathrm{mmol})$ of the carbene complex 4 b and 0.507 g (3.81 mmol) of imine 5 c . After irradiation in 30 mL of ether and the usual isolation, chromatography purification [Chromatotron, silica gel, n-hexane/ether (2:1)] gave $0.539 \mathrm{~g}(55 \%)$ of the pure β-lactam as a $25: 75$ mixture of cis and trans isomers. Crystallization from n-hexane gave 0.175 g of pure trans isomer. At this stage, the cis and trans isomers were inseparable by chromatography.

Trans isomer 7c: mp $90-91^{\circ} \mathrm{C}(n$-hexane $) ;{ }^{1} \mathrm{H}$ NMR (270 MHz) δ $0.75\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.77\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.23\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.28\left(\mathrm{~s}, 3, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33\left(\mathrm{~s}, 3, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.49\left(\mathrm{~m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.26(\mathrm{~m}, 1, \mathrm{NCHCH} 2 \mathrm{O}), 3.35(\mathrm{dq}, J=2.4,6.1$ $\left.\mathrm{Hz}, 1, \mathrm{NCHCH})_{3}\right), 3.68(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1, \mathrm{COCH}), 3.69(\mathrm{~m}, 1$, $\mathrm{NCHCH}_{2} \mathrm{O}$), 3.85 (dd, $J=8.4,7.7 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}$), 3.93 (d, $J=$ $\left.15.0 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.76$ (d, $J=15.0 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}$), $7.30(\mathrm{~m}, 5, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $(67 \mathrm{MHz}) \delta 15.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.7\left(\mathrm{q}, \mathrm{CH}_{3}\right), 19.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 22.9$ (q, CH_{3}), $28.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.9\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.0(\mathrm{t}, \mathrm{NCHCH} 2 \mathrm{O}), 55.8$ (d, NCHCH_{3}), $63.1\left(\mathrm{~d}, \mathrm{NCHCH}_{2} \mathrm{O}\right), 64.3\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 72.5(\mathrm{~d}, \mathrm{COCH})$, 95.4 (s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.7(\mathrm{~d}, \mathrm{Ph}), 128.4(\mathrm{~d}, \mathrm{Ph}), 128.7(\mathrm{~d}, \mathrm{Ph}), 136.3$ (s, $\mathrm{Ph}), 167.9$ (s, CO); IR (film) $\nu 1728(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}=-123.3^{\circ}(\mathrm{c}$ $=1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 72.12 ; \mathrm{H}, 8.92 ; \mathrm{N}$, 8.85. Found: C, $72.31 ; \mathrm{H}, 8.65 ; \mathrm{N}, 8.99$.

Cis isomer $7 \mathbf{c}^{\prime}:{ }^{1} \mathrm{H}$ NMR (from mixture) $(270 \mathrm{MHz}) \delta 0.90$ (d, $J=$ $\left.7.0 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.91\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.14(\mathrm{~d}, J$
$\left.=6.3 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.22\left(\mathrm{~s}, 3, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.25\left(\mathrm{~s}, 3, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.66(\mathrm{~m}$, 1, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.49(\mathrm{~m}, 1), 4.08\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, \mathrm{l}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.19(\mathrm{~d}$, $J=4.4 \mathrm{~Hz}, 1, \mathrm{COCH}), 4.59\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right)$.

Preparation of trans-1-Benzyl-4-methoxy- β-azetidinone (7f). The procedure above using carbene complex $4 \mathrm{~b}(2.123 \mathrm{~g}, 6.11 \mathrm{mmol})$ and imidate $5 \mathrm{f}(0.914 \mathrm{~g}, 6.13 \mathrm{mmol})$ gave 1.64 g of crude β-lactam, as a single diastereoisomer by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Purification by chromatography [Chromatotron, silica gel, hexane/ $\mathrm{Et}_{2} \mathrm{O}$ (2:1)] gave $1.522 \mathrm{~g}(76 \%)$ of a white crystalline solid: $\mathrm{mp} 44-44.5^{\circ} \mathrm{C}$ (hexane); ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 0.74\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.78(\mathrm{~d}, J=$ $\left.6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32\left(\mathrm{~s}, 6, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32\left(\mathrm{~m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.18$ $(\mathrm{m}, 1, \mathrm{NCHCH} \mathrm{O}), 3.35\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.68(\mathrm{dd}, J=4.2,8.6 \mathrm{~Hz}, 1$, $\mathrm{NCHCH} \mathrm{N}_{2} \mathrm{O}$), 3.83 (dd, $J=8.6 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}$), 3.98 (s, 1, $\mathrm{COCHN}), 4.03\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.50\left(\mathrm{~s}, 1, \mathrm{CHOCH}_{3}\right), 4.75$ $\left(\mathrm{d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.30(\mathrm{~m}, 5, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $(67 \mathrm{MHz}) \delta$ $15.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 19.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 22.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 27.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.3(\mathrm{~d}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 43.8\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 55.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 62.4\left(\mathrm{~d}, \mathrm{~N} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $63.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 71.4(\mathrm{~d}, \mathrm{COCHN}), 88.9\left(\mathrm{~d}, \mathrm{CHOCH}_{3}\right), 95.3$ (s, $\mathrm{C}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 127.5(\mathrm{~d}, \mathrm{Ph}), 128.1(\mathrm{~d}, \mathrm{Ph}), 128.4(\mathrm{~d}, \mathrm{Ph}), 135.6(\mathrm{~s}, \mathrm{Ph}), 166.1$ (s, CO); 1R (film) $\vee 1760(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}=-80.2^{\circ}(c=1.05$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 68.65 ; \mathrm{H}, 8.49 ; \mathrm{N}, 8.43$. Found: C, 68.63; H, 8.44; N, 8.55 .

Preparation of trans-Oxacepham 7g. The procedure above using carbene complex $4 \mathrm{~b}(1.051 \mathrm{~g}, 3.03 \mathrm{mmol})$ and oxazine $5 \mathrm{~g}(0.330 \mathrm{~g}, 3.88$ mmol) gave 0.786 g of crude β-lactam 7 g , a single diastereoisomer by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Pure product ($0.571 \mathrm{~g}, 70.3 \%$) was obtained after chromatography [Chromatotron, silica gel, n-hexane/ether (2:1)] as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 0.84$ (d, $J=6.9 \mathrm{~Hz}$, $\left.3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.31\left(\mathrm{~s}, 3, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.33\left(\mathrm{~s}, 3, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.51$ (br d, $\left.J=13.0 \mathrm{~Hz}, 1, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.65$ ($\left.\mathrm{m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.87\left(\mathrm{~m}, 1, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.06(\mathrm{dt}, J=4.6,13$ $\mathrm{Hz}, 1, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.21(\mathrm{~m}, 1, \mathrm{NCHCH} 2 \mathrm{O}), 3.64$ (dd, $J=12,1.5$ $\left.\mathrm{Hz}, 1, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.70\left(\mathrm{dd}, J=4.4,8.6 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}\right)$, 3.84 (dd, $J=8.6,7.9 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}$), 3.91 (dd, $J=5.9,13 \mathrm{~Hz}, \mathrm{l}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.03 (s, $1, \mathrm{COCH}$), $4.12(\mathrm{br} \mathrm{d}, J=12 \mathrm{~Hz}, 1$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.77(\mathrm{~s}, 1, \mathrm{NCHOCH} 2) ;{ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 15.5$ (q, CH_{3}), $19.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 22.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 23.9\left(\mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 27.9$ ($\mathrm{q}, \mathrm{CH}_{3}$), $31.0\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 37.6\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 63.4\left(\mathrm{~d}, \mathrm{NCHCH}_{2} \mathrm{O}\right)$, 64.1 and $65.2\left(\mathrm{t}, \mathrm{N} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 74.0(\mathrm{~d}, \mathrm{COCH}), 85.1(\mathrm{~d}, \mathrm{NCHO})$, $95.5\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 166.1(\mathrm{~s}, \mathrm{CO}) ; 1 \mathrm{R}($ film $) \nu 1763(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; $[\alpha]_{\mathrm{D}}$ $=-40.8^{\circ}\left(c=1.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 62.66$; $\mathrm{H}, 9.01 ; \mathrm{N}, 10.44$. Found: $\mathrm{C}, 62.43 ; \mathrm{H} ; 8.88 ; \mathrm{N}, 10.63$.

Preparation of trans- β-Azetidinone 7e. The procedure described for the synthesis of $6 e$ was followed by starting with $1.051 \mathrm{~g}(3.03 \mathrm{mmol})$ of complex 4 b and $0.272 \mathrm{~g}(3.28 \mathrm{mmol})$ of imine 5 e , to give 0.672 g (84.6%) of almost pure product 7 e , as a single diastereoisomer by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Chromatography [Chromatotron, silica gel, n-hexane/ether (2:1)] yielded 0.435 g (54.5%) of the pure β-lactam 7 e as a white solid: $\mathrm{mp} 62-65^{\circ} \mathrm{C}(n$-hexane $) ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 0.86$ (d, $\left.J=7.0 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.31$ $\left(\mathrm{s}, 6, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38(\mathrm{~m}, 3$, ring CH$), 1.65\left(\mathrm{~m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.75(\mathrm{~m}$, 1 , ring CH), $1.90(\mathrm{~m}, 1$, ring CH), 2.07 (m, , ring CH), $2.75(\mathrm{dt}, J=$ $\left.4.5,12.4 \mathrm{~Hz}, 1, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right), 3.26(\mathrm{~m}, 2,(\mathrm{CONCH})$ and NCHCH 2 O), 3.71 (dd, $J=8.6,4.2 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}$), 3.77 (d, $J=$ $1.5 \mathrm{~Hz}, 1, \mathrm{COCH}), 3.84$ (dd, $J=8.5,7.8 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}$), 3.85 (br $\left.\mathrm{d}, J=8.7 \mathrm{~Hz}, 1, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR $(67 \mathrm{MHz}) \delta 15.7(\mathrm{q}$, CH_{3}), $19.4\left(\mathrm{q}, \mathrm{CH}_{3}\right), 22.1$ (t, ring $\left.\mathrm{CH}_{2}\right), 22.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 24.3$ (t, ring $\left.\mathrm{CH}_{2}\right), 28.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 29.4\left(\mathrm{t}\right.$, ring $\left.\mathrm{CH}_{2}\right), 31.0\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.6(\mathrm{t}$, $\mathrm{NCHCH} 2 \mathrm{O}), 56.9$ (d, CONCH$), 63.7$ (d, $\left.\mathrm{NCHCH}_{2} \mathrm{O}\right), 64.2$ (t , $\left.\mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right), 73.7(\mathrm{~d}, \mathrm{COCH}), 95.3\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 165.7(\mathrm{~s}, \mathrm{CO})$; IR (film) $\nu 1741(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}=-33.2^{\circ}\left(c=1.125, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 67.63 ; \mathrm{H}, 9.84 ; \mathrm{N}, 10.52$. Found: C , 67.53; H, 9.67, N, 10.44 .

General Procedure for the Removal of the Chiral Auxilliary Group of the β-Azetidinones $6 \mathrm{a}-\mathrm{g}$. Hydrolysis of the Oxazolidine Group, A methanol solution of the β-azetidinone was treated with 0.2 N HCl at room temperature and stirred for 3 h . The reaction was monitored by TLC [hexane/EtOAc (1:1)]. Upon complete hydrolysis the MeOH was removed on a rotatory evaporator and the aqueous solution was brought to pH 7.0 with aqueous sodium bicarbonate. The product was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried with MgSO_{4}. After removal of the solvent, a white solid (the hydrolysis product) was present in yields ranging from 70 to 100%.

Hydrogenolysis of the \boldsymbol{N}-Benzyl Group, A MeOH solution (10 mL) of the β-azetidinone hydrolysis product was treated with 0.10 equiv of $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$. The reaction mixture was evacuated and purged several times by use of a H_{2} balloon. It was stirred under a hydrogen atmosphere for 12 h . The $\operatorname{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ catalyst was removed by centrifugation followed by decantation. The methanol was removed on the rolatory evaporator to leave a mixture of the free amino product and

2-phenylethanol. The mixture was taken up in aqueous HCl and extracted four times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to remove the 2-phenylethanol formed. The aqueous phase was brought to pH 7.0 by the addition of aqueous sodium bicarbonate solution. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried with MgSO_{4}. Removal of the solvent resulted in the free amino β-azetidinone (a colorless oil). These compounds were relatively unstable and were directly converted to their t-BOC derivatives for full characterization.

Synthesis of 1-Benzyl-3-amino- β-azetidinone (8a). By the above procedure, 1-benzyl- β-azetidinone 6 ($65 \mathrm{mg}, 0.20 \mathrm{mmol}$), 5 mL of MeOH , and 5 mL of 0.2 N HCl were stirred for 3 h in a round-bottomed flask. After isolation, $54 \mathrm{mg}(0.18 \mathrm{mmol}, 91 \%)$ of the solid hydrolysis product was recovered: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 2.84$ (dd, $J=2.1,5.5$ $\mathrm{Hz}, 1, \mathrm{CHCHC}=\mathrm{O}), 3.10(\mathrm{dd}, J=4.7,5.5 \mathrm{~Hz}, 1, \mathrm{CHCHC}=\mathrm{O}), 3.52$ (dd, $\left.J=9.0,11 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{OH}\right), 3.64\left(\mathrm{dd}, J=4.1,11 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$, 3.75 (dd, $J=4.1,9.0 \mathrm{~Hz}, \mathrm{PhC} H \mathrm{NH}$), 4.04 (dd, $J=2.1,4.7 \mathrm{~Hz}, 1$, $\mathrm{CHC}=0), 4.21(\mathrm{~d}, J=15 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 4.30(\mathrm{~d}, J=15 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph})$, $7.10(\mathrm{~m}, 2, \mathrm{ArH}), 7.20(\mathrm{~m}, 8, \mathrm{ArH})$. The hydrolysis product was then subjected to hydrogenolysis and separation by extraction to give 22 mg (74%) of 8a as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.80(\mathrm{br} \mathrm{s}, 2$, $\left.\mathrm{NH}_{2}\right), 2.91(\mathrm{dd}, J=2.0,5.5 \mathrm{~Hz}, 1, \mathrm{CHCHC}=\mathrm{O}), 3.44(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $1, \mathrm{CHCHC}=\mathrm{O}), 4.21(\mathrm{dd}, J=2.0,5.5 \mathrm{~Hz}, \mathrm{l}, \mathrm{CHC}=\mathrm{O}), 4.38(\mathrm{~s}, 2$, CHPh $)$, 7.23-7.39 (m, 5, ArH). This material was difficult to purify further and was immediately converted to its t-BOC derivative for complete characterization.

Synthesis of 1-Benzyl-3-amino-4,4-dimethyl- β-azetidinone (8b). By the above procedure, $\mathbf{6 b}(250 \mathrm{mg}, 0.69 \mathrm{mmol}), 5 \mathrm{~mL}$ of MeOH , and 5 mL of 0.2 N HCl were stirred for 3 h in a round-bottomed flask. After isolation, $208 \mathrm{mg}(0.64 \mathrm{mmol}, 94 \%)$ of the solid hydrolysis product was recovered: ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) \delta 0.99\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right)$, $3.53(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O}), 3.48-3.67\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{OH}\right), 3.75(\mathrm{dd}, J=4.0,9.0$ $\mathrm{Hz}, \mathrm{PhC} H \mathrm{NH}), 4.10(\mathrm{~d}, J=15.3 \mathrm{~Hz}, \mathrm{l}, \mathrm{C} H \mathrm{Ph}), 4.20(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, 1, $\mathrm{C} H \mathrm{Ph}$), 7.13-7.28 ($\mathrm{m}, 5, \mathrm{ArH}$). The hydrolysis product was then subjected to hydrogenolysis and separation by extraction to give 108 mg (82%) of 8 b as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.02\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right)$, $1.12\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.51\left(\mathrm{br} \mathrm{s}, 2, \mathrm{NH}_{2}\right), 3.74(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O}), 4.18(\mathrm{~d}, \mathrm{~J}$ $=15.3 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 4.25(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 7.18(\mathrm{~m}, 5, \mathrm{ArH})$. This material was immediately converted to its t-BOC derivative for complete charaterization.

Synthesis of trans-1-Benzyl-3-amino-4-methyl- β-azetidinone (8 c), By the above procedure, $6 \mathrm{c}(91 \mathrm{mg}, 0.27 \mathrm{mmol}), 5 \mathrm{~mL}$ of MeOH , and 5 mL of 0.2 N HCl were stirred for 3 h in a round-bottomed flask. After isolation, $84 \mathrm{mg}(0.27 \mathrm{mmol}, 100 \%)$ of the solid hydrolysis product was recovered: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.06\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3, \mathrm{CH}_{3}\right), 2.93$ (br s, 2, OH and NH), $3.34(\mathrm{dq}, J=1.6,6.2 \mathrm{~Hz}, 1, \mathrm{CHCHC=}$), 3.58 (dd, $J=8.9,11 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{OH}$), $3.62(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O}), 3.70(\mathrm{dd}, J=$ $4.1,11 \mathrm{~Hz}, 1, \mathrm{C}_{2} \mathrm{OH}$), 3.84 (dd, $J=4.1,8.9 \mathrm{~Hz}, 1, \mathrm{PhCHNH}$), 4.07 (d, $J=15.2 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 4.54(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 7.27(\mathrm{~m}$, $10, \mathrm{ArH}$). The hydrolysis product was then subjected to hydrogenolysis and separation as above to give $39 \mathrm{mg}(76 \%)$ of 8 c as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.23\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{br} \mathrm{s}, 2, \mathrm{NH}_{2}\right)$, $3.28(\mathrm{dq}, J=1.8,6.2 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{CHC}=\mathrm{O}), 3.70(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1$, $\mathrm{CHC}=\mathrm{O}), 4.09(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 4.59(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1$, $\mathrm{CHPh}), 7.31(\mathrm{~m}, 5, \mathrm{ArH})$. This material was immediately converted to its t-BOC derivative for complete characterization.

Synthesis of cis-1-Benzyl-3-amino-4-methyl- β-azetidinone ($8 c^{\prime}$), By the above procedure, $6 \mathrm{c}^{\prime}(82 \mathrm{mg}, 0.24 \mathrm{mmol}), 5 \mathrm{~mL}$ of MeOH , and 5 mL of 0.2 N HCl were stirred for 3 h in a round-bottomed flask. After workup, 76 mg ($0.24 \mathrm{mmol}, 100 \%$) of the solid hydrolysis product was recovered: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.22\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3, \mathrm{CH}_{3}\right), 2.83$ (br s, 2, OH and NH), 3.53-3.62 (m, 1, $\mathrm{CHCHC}=\mathrm{O}$), 3.64 (dd, $J=$ $9.0,11 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{OH}$), 3.76 (dd, $J=4.1,11 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), 3.83 (dd, $J=4.1,9.0 \mathrm{~Hz}, \operatorname{PhC} H \mathrm{NH}), 4.00(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{C}=\mathrm{O}), 4.05(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}, 1, \mathrm{CHPh}), 4.60(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{CHPh}), 7.11-7.49(\mathrm{~m}$, $10, \mathrm{ArH}$). The hydrolysis product was then subjected to hydrogenolysis and separation by extraction to give 44 mg (94%) of $8 \mathrm{c}^{\prime}$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.05\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3, \mathrm{CH}_{3}\right), 1.61(\mathrm{br} \mathrm{s}$, $\left.2, \mathrm{NH}_{2}\right), 3.61(\mathrm{dq}, J=5.0,6.3 \mathrm{~Hz}, 1, \mathrm{CHCHC}=\mathrm{O}), 4.03(\mathrm{~d}, J=15.1$ $\mathrm{Hz}, 1, \mathrm{C} H \mathrm{Ph}), 4.13(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{C}=\mathrm{O}), 4.51(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, 1, CHPh), 7.15-7.31 (m,5, ArH). This material was immediately converted to its t-BOC derivative for further characterization.

Attempted Synthesls of Carbapenam 8d, All attempts to remove the chiral auxiliary from $\mathbf{6 d}$ led to complete decomposition of the β-lactam product.

Synthesis of trans-3-Amino- β-carbacepham (8e), By the above procedure, trans- β-azetidinone $7(50 \mathrm{mg}, 0.17 \mathrm{mmol}), 5 \mathrm{~mL}$ of MeOH , and 5 mL of 0.2 N HCl were stirred for 3 h in a round-bottomed flask. After isolation, $42 \mathrm{mg}(0.16 \mathrm{mmol}, 96 \%)$ of the solid hydrolysis product was recovered: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.05(\mathrm{~m}, 1$, ring CH), $1.29(\mathrm{~m}, 2$, ring $\mathrm{CH}), 1.60(\mathrm{~m}, 1$, ring CH$), 1.77(\mathrm{~m}, 1$, ring CH$), 1.88(\mathrm{~m}, 1$, ring CH$)$,
2.68 (ddd, $J=4.6,13,15 \mathrm{~Hz}, 1, \mathrm{NCH}), 3.16(\mathrm{dd}, J=4.4,10 \mathrm{~Hz}, 1$, $\mathrm{CHCHC}=\mathrm{O}), 3.27(\mathrm{br} \mathrm{s}, 2, \mathrm{OH}$ and NH$), 3.62(\mathrm{dd}, J=8.8,10 \mathrm{~Hz}, 1$, $\mathrm{CH}_{2} \mathrm{OH}$), $3.66(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O}), 3.71\left(\mathrm{dd}, J=4.1,10 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.80(\mathrm{dd}, J=4.6,13 \mathrm{~Hz}, 1, \mathrm{NCH}), 3.85(\mathrm{dd}, J=4.1,8.8 \mathrm{~Hz}, 1$, $\mathrm{PhC}(\mathrm{NNH}), 7.23-7.36(\mathrm{~m}, 5, \mathrm{ArH})$. The hydrolysis product was then subjected to hydrogenolysis and separation by extraction to give 12 mg (53%) of 8e as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.18-1.43(\mathrm{~m}, 3$, ring CH), $1.65(\mathrm{~m}, 1$, ring CH$), 1.88(\mathrm{~m}, 1$, ring CH$), 2.12(\mathrm{~m}, 1$, ring CH), 2.28 ($\mathrm{br} \mathrm{s}, 2, \mathrm{NH}_{2}$), 2.77 (dt, $J=4.5,12 \mathrm{~Hz}, 1, \mathrm{NCH}$), 3.17 (ddd, $J=1.1,5.4,11 \mathrm{~Hz}, 1, \mathrm{CHCHC}=\mathrm{O}), 3.80(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O}), 3.82$ (dd, $J=4.5,13 \mathrm{~Hz}, 1, \mathrm{NCH}$). This material was immediately converted to its t-BOC derivative for further characterization.

Synthesis of trans-1-Benzyl-3-amino-4-methoxy- β-azetidinone (8f), By the above procedure, 6 ($321 \mathrm{mg}, 0.88 \mathrm{mmol}$), 5 mL of MeOH , and 5 mL of 0.2 N HCl were stirred for 3 h in a round-bottomed flask. After isolation, 272 mg ($0.88 \mathrm{mmol}, 100 \%$) of the solid hydrolysis product was recovered: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 2.83$ (br s, $2, \mathrm{OH}$ and NH), 3.15 (s, 3 , OMe), 3.56 (dd, $J=9.0,11 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{OH}$), 3.70 (dd, $J=4.1,11$ $\mathrm{Hz}, 1, \mathrm{CH}_{2} \mathrm{OH}$) 3.85 (dd, $J=4.1,9.0 \mathrm{~Hz}, 1, \mathrm{PhCHNH}$), 3.88 (s, 1, $\mathrm{CHC}=\mathrm{O}), 4.13(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{CHPh}), 4.42(\mathrm{~s}, 1, \mathrm{CHCHC}=\mathrm{O})$, $4.55(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{CHPh}), 7.26(\mathrm{~m}, 5, \mathrm{ArH})$. The hydrolysis product was then subjected to hydrogenolysis and isolation by extraction to give $130 \mathrm{mg}(71 \%)$ of $\mathbf{8 f}$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta$ 1.62 (br s, 2, NH2), 3.31 (s, 3, OMe), 4.00 (s, 1, CHC=O), 4.18 (d, J $=15.1 \mathrm{~Hz}, 1, \mathrm{C} H \mathrm{Ph}), 4.47(\mathrm{~s}, 1, \mathrm{CHCHC}=0), 4.60(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, 1, $\mathrm{C} H \mathrm{Ph}$), $7.33(\mathrm{~m}, 5, \mathrm{ArH})$. This material was immediately converted to its t-BOC derivative for further characterization.

Synthesis of trans-3-Amino- β-oxacepham ($\mathbf{8 g}$), Compound $\mathbf{6 g}$ (273 $\mathrm{mg}, 0.90 \mathrm{mmol}$), 5 mL of MeOH , and 5 mL of 0.2 N HCl were stirred for 3 h in a round-bottomed flask. After isolation, $206 \mathrm{mg}(0.79 \mathrm{mmol}$, 88%) of the solid hydrolysis product was recovered: ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}) \delta 1.40(\mathrm{brd}, J=10 \mathrm{~Hz}, 1$, ring CH$), 1.70(\mathrm{~m}, 1$, ring CH$), 2.96$ $(\mathrm{dt}, J=5,12 \mathrm{~Hz}, 1, \mathrm{NCH}), 3.02(\mathrm{br} \mathrm{s}, 2, \mathrm{OH}$ and NH$), 3.48-3.58(\mathrm{~m}$, 2, $\mathrm{CH}_{2} \mathrm{OH}$ and OCH), 3.70 (dd, $J=4.0,11 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{OH}$), 3.83 (dd, $J=5,12 \mathrm{~Hz}, 1, \mathrm{NCH}), 3.88(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O}), 3.91(\mathrm{dd}, J=4.0,11 \mathrm{~Hz}$, 1, PhCHNH), 3.99 (dd, $J=1.6,10 \mathrm{~Hz}, 1, \mathrm{OCH}), 4.64$ (s, 1, $\mathrm{CHCHC}=\mathrm{O}), 7.31(\mathrm{~m}, 5, \mathrm{ArH})$. The hydrolysis product was then subjected to hydrogenolysis and isolation by extraction to give 82 mg (74%) of 8 g as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.51$ (br d, $J=$ $12 \mathrm{~Hz}, 1$, ring CH), $1.82\left(\mathrm{~m}, 1\right.$, ring CH), $1.82\left(\mathrm{br} \mathrm{s}, 2, \mathrm{NH}_{2}\right), 3.06$ (ddd, $J=4.6,12,13 \mathrm{~Hz}, 1, \mathrm{NCH}), 3.65(\mathrm{dt}, J=1.9,12 \mathrm{~Hz}, 1, \mathrm{OCH}), 3.89$ (dd, $J=6.0,13 \mathrm{~Hz}, 1, \mathrm{NCH}), 4,02(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O}), 4.09(\mathrm{brd}, J=12$ $\mathrm{Hz}, 1, \mathrm{OCH}), 4.69(\mathrm{~s}, 1, \mathrm{CHCHC}=\mathrm{O})$. This material was immediately converted to its t-BOC derivative for further characterization.

General Procedure for the Preparation of 3-[[(tert-Butyloxy)-carbonyl]amino]- β-azetidinone Derivatives, The 3 -amino- β-azetidinones were placed in a round-bottomed flask equipped with a stir bar. tertButyl alcohol (10 mL) was added, followed by the addition of di-tertbutyl dicarbonate (1.1 equiv) and triethylamine (1.1 equiv). The reaction mixture was stirred for 6 h . At this time, the solvent was removed on a rotatory evaporator and the product was purified by chromatography (preparative TLC, $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the 3-[[(tert-butyloxy)-carbonyl]amino]- β-azetidinone derivatives. These products could be crystallized from hexane/EtOAc.

Synthesized of 1-Benzyl-3-[[(tert-butyloxy) carbonyl]amino $]$ - β-azetidinone (9 a), By the above procedure, $78 \mathrm{mg}(0.24 \mathrm{mmol})$ of free amino compound 8a was converted to 15 mg (24%) of the pure $9 \mathrm{a}: \mathrm{mp}$ 133-134 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+2.89^{\circ}\left(c 1.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.43(\mathrm{~s}$, $\left.9, \mathrm{CH}_{3}\right), 3.12(\mathrm{dd}, J=2.4,5.6 \mathrm{~Hz}, 1, \mathrm{CHCHC}=0), 3.45(\mathrm{t}, J=5.3 \mathrm{~Hz}$, 1, $\mathrm{CHCHC}=\mathrm{O}), 4.40(\mathrm{~d}, J=15 \mathrm{~Hz}, 1, \mathrm{CHPh}), 4.41(\mathrm{~d}, J=15 \mathrm{~Hz}, 1$, $\mathrm{C} H \mathrm{Ph}), 4.82(\mathrm{br} \mathrm{s}, 1, \mathrm{CHC}=\mathrm{O}), 5.15(\mathrm{brs}, 1, \mathrm{NH}), 7.31(\mathrm{~m}, 5, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 28.3,46.0,48.7,57.4,80.4,127.9,128.2,128.9$, $135.1,154.8,166.7 ; 1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) v 1713,1751(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 65.20 ; \mathrm{H}, 7.30 ; \mathrm{N}, 10.14$. Found: $\mathrm{C}, 64.95$ H, 7.59; N, 9.82.

Synthesis of 1-Benzyl-3-[[(tert-butyloxy)carbonyl]amino]-4,4-di-methyl- β-azetidinone (9 b), By the above procedure, 87 mg (0.43 mmol) of free amino compound 8 a was converted to 129 mg (99%) of the pure 9b: $\mathrm{mp} 160-161^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-6.60^{\circ}\left(c=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The spectra of this compound were identical with those of its enantiomer 11b reported below.

Synthesis of trans-1-Benzyl-3-[[(tert-butyloxy)carbonyl]amino]-4-methyl- β-azetidinone (9 c), By the above procedure, $39 \mathrm{mg}(0.21 \mathrm{mmol}$) of free amino compound 8 c was converted to $45 \mathrm{mg}(76 \%)$ of the pure $9 \mathrm{c}: \mathrm{mp} 129-130^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+54.31^{\circ}\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The spectra of this compound were identical with those of its enantiomer 11c reported below.

Synthesis of cis-1-Benzyl-3-[f(tert-butyloxy)carbonyllaminol-4-methyl- β-azetidinone ($9 \mathrm{c}^{\prime}$), By the above procedure, $44 \mathrm{mg}(0.23 \mathrm{mmol})$ of free amino compound $8 \mathrm{c}^{\prime}$ was converted to $43 \mathrm{mg}(64 \%)$ of the pure
$9 \mathbf{c}^{\prime}: \operatorname{mp~} 171-172^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}=-40.74^{\circ}\left(c=0.54, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The spectra of this compound were identical with those of its enantiomer I1c \mathbf{c}^{\prime} reported below.

Synthesis of trans-1-Benzyl-3-[[(tert-butyloxy) carbonyl]amino $]-\beta$-azetidinone (9e), By the above procedure, $12 \mathrm{mg}(0.086 \mathrm{mmol})$ of free amino compound 8 e was converted to 17 mg (83%) of the desired product.

Synthesis of trans-1-Benzyl-3-[[(tert-butyloxy)carbonyl]amino]-4-methoxy- β-azetidinone (9f). By the above procedure, $43 \mathrm{mg}(0.21 \mathrm{mmol})$ of free amino compound 8 f was converted to $42 \mathrm{mg}(66 \%)$ of the pure 9f: mp $107-108{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+24.56^{\circ}\left(c \mathrm{c} .8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The spectra of this compound were identical with those of its enantiomer 11 f reported below.

Synthesis of trans-3-[[(tert-Butyloxy) carbonyl]amino]- β-oxacepham $(9 \mathbf{g})$, By the above procedure, $82 \mathrm{mg}(0.58 \mathrm{mmol})$ of free amino compound 8 g was converted to 44 mg (32%) of the pure 9 g : mp 157-158 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+32.58^{\circ}\left(c\right.$. $\left.1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The spectra of this compound were identical with those of its enantiomer 11 g reported below.

General Procedure for Removal of the Chiral Auxiliary Group from β-Azetidinone 7, Hydrolysis of the Oxazolidine Group. The azetidinone was stirred in an appropriate amount ($\sim 5 \mathrm{~mL} / \mathrm{mmol}$) of 0.2 N HCl until it dissolved ($\sim 6-8 \mathrm{~h}$). The aqueous solution was washed with $3 \times 5 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and excess acid was neutralized with solid NaHCO_{3}. Extraction with $5 \times 5 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, drying over anhydrous MgSO_{4}, and removal of solvent gave relatively pure amino alcohol. In some cases, the amino alcohol was directly oxidized without isolation.

Oxidative Cleavage of the Amino Alcohols to Free Amino β-Azetidinones 8. The amino alcohol was dissolved in $5-10 \mathrm{~mL}$ of 0.2 N HCl and NaIO_{4} (l equiv) in $\mathrm{H}_{2} \mathrm{O}$ was slowly added. After being stirred for 30 min at room temperature the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, the combined acidic portion was neutralized with NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 5 \mathrm{~mL})$, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ portions were dried over anhydrous MgSO_{4}. Removal of the solvent under vacuum gave the free amino β-lactam, which was unstable and was immediately converted to its t-BOC derivative.

Synthesis of 1-Benzyl-3-amino-4,4-dimethyl- β-azetidinone (10b). Starting from $2.00 \mathrm{~g}(6.07 \mathrm{mmol})$ of $7 \mathbf{b}(85: 15 \mathrm{mixture}$ of diastereoisomers) and 32 mL 0.2 N HCl gave $1.02 \mathrm{~g}(52.5 \%)$ of the product amino alcohol as a mixture of isomers. The major isomer was separated by preparative TLC chromatography (silica gel, four $25 \times 25 \mathrm{~cm}$ plates, 5% 2-propanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, R_{f}$ minor $>R_{f}$ major) to yield 0.572 g the pure major isomer. The minor isomer could not be isolated pure. Major isomer: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 0.92\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97$ $\left(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.19\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.75$ $\left.\left(\mathrm{m}, 2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)+\mathrm{NH}\right), 2.48(\mathrm{~m}, 1, \mathrm{NCHCH} 2 \mathrm{O}), 3.41(\mathrm{~m}, \mathrm{l}$, $\mathrm{NCHCH} 2 \mathrm{O}), 3.61\left(\mathrm{~m}, 2, \mathrm{NCHCH}_{2} \mathrm{O}+\mathrm{OH}\right), 3.69(\mathrm{~s}, 1, \mathrm{CHC}=\mathrm{O})$, $4.26\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.31\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, \mathrm{l}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.29$ ($\mathrm{m}, 5, \mathrm{ArH}$). A $0.510-\mathrm{g}(1.76-\mathrm{mmol})$ portion of the amino alcohol was used as a starting material. After dissolving in 13 mL of $0.2 N \mathrm{HCl}$, a solution of $0.382 \mathrm{~g}(1.78 \mathrm{mmol})$ of NaIO_{4} in 4 mL of $\mathrm{H}_{2} \mathrm{O}$ was slowly added. After 30 min , the reaction mixture was treated as above: yield $0.152 \mathrm{~g}(42 \%) ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 1.10\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right)$, $1.65\left(\right.$ bs $\left.2, \mathrm{NH}_{2}\right), 3.83\left(\mathrm{~s}, 1, \mathrm{COCHNH} \mathrm{N}_{2}\right), 4.30\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.31(\mathrm{~m}$, 5, ArH).

Synthesis of trans-and cis-1-Benzyl-3-amino-4-methyl- β-azetidinones (10c and 10c \mathbf{c}^{\prime}). A $1: 1$ mixture of cis and trans oxazolidine derivatives ($1.14 \mathrm{~g}, 3.60 \mathrm{mmol}$) (mother liquors after crystallization of the trans isomer) and 20 mL of 0.2 N HCl was used. The usual procedure gave $0.686 \mathrm{~g}(69 \%)$ of the mixture of isomeric amino alcohols. The isomers were separated by preparative TLC (silica gel, three $25 \times 25 \mathrm{~cm}$ plates, 5% 2-propanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, R_{f}$ cis $>R_{f}$ trans); 0.289 g of the pure cis and 0.275 g of the pure trans isomers were obtained as oils. Trans isomer: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}) \delta 0.91\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.96(\mathrm{~d}, J$ $\left.=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3, \mathrm{CHCH}_{3}\right), 1.77(\mathrm{~m}, 1$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.45(\mathrm{~m}, 1, \mathrm{NCHCH} 2 \mathrm{O}), 3.37(\mathrm{dq}, J=6.1,1.7 \mathrm{~Hz}, 1$, CHCH_{3}), 3.41 (dd, $J=11,7.7 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}$), 3.61 (dd, $J=11$, $3.9 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}$), $3.68(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1, \mathrm{CHC}=\mathrm{O}), 4.11(\mathrm{~d}, J$ $\left.=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.30(\mathrm{~m}, 5$, ArH). Cis isomer: ' H NMR (270 MHz$) \delta 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 1.84\left(\mathrm{~m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.54(\mathrm{~m}, 1, \mathrm{NCHCH} 2 \mathrm{O}), 3.43$ (dd, $\left.J=12,8.4 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}\right), 3.64(\mathrm{dd}, J=12,3.9 \mathrm{~Hz}, 1$, $\left.\mathrm{NCHCH}_{2} \mathrm{O}\right), 3.69\left(\mathrm{dq}, J=6.3,5.0 \mathrm{~Hz}, 1, \mathrm{CHCH}_{3}\right), 4.10(\mathrm{~d}, J=15.1$ $\left.\mathrm{Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.11(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1, \mathrm{CHC}=0), 4.59(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $\left.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.30(\mathrm{~m}, 5, \mathrm{ArH})$.
cis-3-Amino-4-methyl Derivative $10 c^{\prime}$, Reaction of $0.269 \mathrm{~g}(0.975$ $\mathrm{mmol})$ of cis amino alcohol with $0.222 \mathrm{~g}(1.04 \mathrm{mmol})$ of NalO_{4} in 15 mL 0.2 N HCl gave $0.126 \mathrm{~g}(66 \%)$ of $10 \mathrm{c}^{\prime}:{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.15$ (d, $\left.J=6.3 \mathrm{~Hz}, 3, \mathrm{CH}_{3}\right), 2.00\left(\mathrm{br} \mathrm{s}, 2, \mathrm{NH}_{2}\right), 3.69(\mathrm{dq}, J=6.1,5.2 \mathrm{~Hz}$, $1, \mathrm{NCHCH} 3), 4.11\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.23(\mathrm{~d}, J=5.2 \mathrm{~Hz}$,

1, $\mathrm{COCH} \mathrm{NH}_{2}$), 4.58 (d, $\left.J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.20(\mathrm{~m}, 5, \operatorname{ArH})$.
trans-3-Amino-4-methyl Derivative 10c, HIO_{4} was used in this case. The procedure was the same as that used for 4 -methoxy derivative (see below). Reaction of 0.653 g (2.07 mmol) of trans-oxazolidine derivative 7 c with 0.518 g (2.27 mmol) of periodic acid in 13 mL of 0.2 N HCl gave $0.199 \mathrm{~g}(50.6 \%)$ of trans-3-amino-4-methyl derivative: ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}) \delta 1.24\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3, \mathrm{CH}_{3}\right), 2.10\left(\mathrm{br} \mathrm{s}, 2, \mathrm{NH}_{2}\right), 3.28(\mathrm{dq}, J$ $=1.8,6.2 \mathrm{~Hz}, 1, \mathrm{NCHCH} 3), 3.71\left(\mathrm{~s}, 1, \mathrm{COC} H \mathrm{NH}_{2}\right), 4.10(\mathrm{~d}, J=15.1$ $\left.\mathrm{Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.59\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.31(\mathrm{~m}, 5, \mathrm{ArH})$.

Attempted Synthesis of trans-3-Aminocarbacepham 10e. From 0.325 $\mathrm{g}(1.22 \mathrm{mmol})$ of 7 e in 10 mL of 0.2 N HCl was obtained 0.244 g (88.3%) of the product amino alcohol as an oil: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 0.85\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.91\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.14-1.36(\mathrm{~m}, 2$, ring CH$), 1.56-1.84\left(\mathrm{~m}, 3\right.$, ring CH and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.99(\mathrm{~m}, 1$, ring CH$), 2.39(\mathrm{~m}, 1, \mathrm{PhCHN}), 2.72(\mathrm{dt}, J=12.5,4.5 \mathrm{~Hz}$, 1, $\left.\mathrm{NCH}\left(\mathrm{CH}_{2}\right)_{3}\right), 3.12$ (ddd, $J=1.3,4.3,11 \mathrm{~Hz}, 1, \mathrm{CHCHC}=\mathrm{O}$), 3.35 (dd, $\left.J=11,7.2 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{OH}\right), 3.54\left(\mathrm{dd}, J=4.0,11 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.69(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1, \mathrm{CHC}=\mathrm{O}), 3.75(\mathrm{dd}, J=13.2,4.7 \mathrm{~Hz}, 1$ $\left.\mathrm{NCH}\left(\mathrm{CH}_{2}\right)_{3}\right)$. All attempts to oxidatively cleave this amino alcohol led to decomposition of the β-lactam product.
Synthesis of trans-3-Benzyl-3-amino-4-methoxy- β-azetidinone (10f). a, Hydrolysis. From 0.613 g of 7 f , was obtained $0.400 \mathrm{~g}(74 \%)$ of the amino alcohol hydrolysis product as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 0.92\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.79\left(\mathrm{~m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.48(\mathrm{~m}, 1, \mathrm{NCHCH} 2 \mathrm{O}), 3.31\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, 3.40 (dd, $J=11,7.9 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}$), 3.63 (dd, $J=11,3.9 \mathrm{~Hz}, 1$, $\left.\mathrm{NCHCH}_{2} \mathrm{O}\right), 3.95(\mathrm{~s}, 1, \mathrm{COCHNH}), 4.19\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.51(\mathrm{~s}, 1, \mathrm{CHOCH} 3), 4.63\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.30(\mathrm{~m}, 5$, ArH).
b, Direct Oxidation, β-Lactam $7 \mathrm{f}(0.168 \mathrm{~g}, 0.51 \mathrm{mmol})$ was dissolved in 5 mL of 0.2 N HCl ($3 / 4 \mathrm{hr}$), and a solution of $0.115 \mathrm{~g}(0.54 \mathrm{mmol})$ of NaIO_{4} in 2 mL of $\mathrm{H}_{2} \mathrm{O}$ was slowly added. After 30 min of stirring at room temperature, the acidic solution was extracted twice with $5-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with 5 mL of 0.2 N HCl , and the combined acidic portions were neutralized with an excess of solid NaHCO_{3} and were extracted with five portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The methylene chloride extract was washed twice with 10 mL of 0.2 N HCl and this acidic extract gave, after neutralization with solid NaHCO_{3} and extraction to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, drying by MgSO_{4} and evaporation of the solvent, $0.052 \mathrm{~g}(50.5 \%)$ of the free amino compound: ${ }^{1} \mathrm{H}$ NMR (270 MHz) δ $1.62\left(\mathrm{br} \mathrm{s}, 2, \mathrm{NH}_{2}\right), 3.31\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 4.0(\mathrm{~s}, 1, \mathrm{COCHNH} 2), 4.18(\mathrm{~d}$, $\left.J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.46\left(\mathrm{~s}, 1, \mathrm{CHOCH}_{3}\right), 4.61(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $\left.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.33$ (m,5, ArH).

Synthesis of trans-3-Aminooxacepham \boldsymbol{t}-BOC Derivative 11g, a, Hydrolysis, A $0.571-\mathrm{g}$ ($2.13-\mathrm{mmol}$) portion of 7 g and 15 mL of 0.2 N HCl were mixed for 20 min and the resulting solution was worked up as above: yield. $0.410 \mathrm{~g}(84.4 \%)$ of an almost colorless oil; ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}) \delta 0.92\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.50(\mathrm{~m}, 1$, ring CH$), 1.60(\mathrm{~m}, 1$, ring CH$), 1.80(\mathrm{~m}, 2$, ring CH and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.48(\mathrm{dt}, J=7.0,4.0 \mathrm{~Hz}, 1), 2.64(\mathrm{br} \mathrm{s}, 1), 3.07$ (dt, $\left.J=12.1,4.5 \mathrm{~Hz}, 1, \mathrm{NCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.43(\mathrm{~m}, 1), 3.65(\mathrm{dt}, J=12.2$, $1.9 \mathrm{~Hz}, 1), 3.65(\mathrm{~m}, 1), 3.90(\mathrm{dd}, J=13.5,5.7 \mathrm{~Hz}, 1), 3.97(\mathrm{~s}, 1$, $\mathrm{CHC}=\mathrm{O}$), 4.09 (brd, $J=12 \mathrm{~Hz}, 1), 4.71(\mathrm{~s}, 1, \mathrm{NCHOCH}$) .
b, Oxidation and Conversion to \boldsymbol{t}-BOC Derivative 11g. The amino alcohol ($0.400 \mathrm{~g}, 1.75 \mathrm{mmol}$) was dissolved in 20 mL of tert-butyl alcohol and a solution of $0.992 \mathrm{~g}(1.83 \mathrm{mmol})$ of NaIO_{4} in a mixture of 1.2 mL of 2 N HCl and 1 mL of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise. The mixture was stirred 30 min at room temperature and then made basic by addition of triethylamine. Di-tert-butyl dicarbonate ($0.764 \mathrm{~g}, 3.50 \mathrm{mmol}$) and tert-butyl alcohol were added and the reaction mixture was stirred overnight. The tert-butyl alcohol was evaporated and the residue was partitioned between water and ether. After drying with MgSO_{4} and evaporation of the solvent, 0.504 g of an oil was obtained. Crystallization from n-hexane/ethyl acetate mixture gave $0.065 \mathrm{~g}(16 \%)$ of the desired product. The analytical sample was prepared by second crystallization: $\mathrm{mp} 157-158{ }^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.44(\mathrm{~s}, 9$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.55(\mathrm{~m}, 1), 1.86(\mathrm{~m}, 1), 3.12(\mathrm{br} \mathrm{dt}, J=12.6,4.4 \mathrm{~Hz}, 1$, $\mathrm{NCH}), 3.67(\mathrm{dt}, J=12.2,1.8 \mathrm{~Hz}, 1, \mathrm{OCH}), 3.92(\mathrm{dd}, J=13.5,6.0 \mathrm{~Hz}$, $1, \mathrm{NCH}), 4.11(\mathrm{~m}, 1), 4.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1, \mathrm{COCH} H \mathrm{~N}), 4.95(\mathrm{~s}, 1$, NCHOCH_{2}), 5.04 (br s, 1, NH); ${ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 23.8,28.2,37.9$, $65.3,66.0,80.7,84.6,154.7,163.9 ; 1 \mathrm{R}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu 1713,1765 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}$ $=-32.64^{\circ}\left(c=1.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 54.53$; H, 7.49; N, 11.56. Found: C, 54.94; H, 7.33; N, 11.62 .

Synthesis of 11b, Compound $10 \mathrm{~b}(0.141 \mathrm{~g}, 0.686 \mathrm{mmol}), 0.178 \mathrm{~g}$ (0.816 mmol) of di-tert-butyl dicarbonate, and $0.1 \mathrm{~g}(1 \mathrm{mmol})$ of triethylamine in 7 mL of tert-butyl alcohol were allowed to react overnight. tert-Butyl alcohol was evaporated and the residue purified by preparative TLC chromatography (silica gel, two $25 \times 25 \mathrm{~cm}$ plates, 5% of 2propanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): yield $0.164 \mathrm{~g}(78 \%): \mathrm{mp} 160-161^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexane); 'H NMR (270 MHz) $\delta 1.06\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.43$
(s, $\left.9,\left(\mathrm{CH}_{3}\right)_{3}\right), 4.25\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.36(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, 1, $\mathrm{CH}_{2} \mathrm{Ph}$), $4.54(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1, \mathrm{COCHNH}), 5.20(\mathrm{br} \mathrm{s}, 1, \mathrm{NH}), 7.30$ (m, 5, ArH); ${ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 20.5,24.3,28.2,43.2,62.7,66.4$, 80.2, 127.7, 128.4, 128.7, 136.6, 155.3, 165.3; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu 1715,1750$ $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}=+6.64^{\circ}\left(c=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $67.08 ; \mathrm{H}, 7.95 ; \mathrm{N}, 9.20$. Found: C, $66.92 ; \mathrm{H}, 7.69 ; \mathrm{N}, 9.15$.

Synthesis of 11c, The reaction of $0.164 \mathrm{~g}(0.86 \mathrm{mmol})$ of the free amino compound 10 c with 0.221 g (1.01 mmol) of di-tert-butyl dicarbonate and $0.120 \mathrm{~g}(1.2 \mathrm{mmol})$ of triethylamine in 5 mL of tert-butyl alcohol gave 0.185 g (74%) of the product after chromatography: mp $129-130^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.28$ (d, $J=6.1$ $\left.\mathrm{Hz}, 3, \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~s}, 9, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.45(\mathrm{dq}, J=6.1,1.8 \mathrm{~Hz}, \mathrm{l}$, $\left.\mathrm{NCHCH}_{3}\right), 4.12\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.32(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1$, $\mathrm{COC} H \mathrm{NH}), 4.63\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.14(\mathrm{br} \mathrm{s}, 1, \mathrm{NH}), 7.30$ (m, 5, ArH); ${ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 16.8,28.3,44.3,57.8,64.3,80.4$, 127.8, 128.3, 128.8, 135.6, 155.0, 165.7; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu 1710,1750 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}=-54.27^{\circ}$ (c 1.10, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}$, $66.19 ; \mathrm{H}, 7.64$; N, 9.65 . Found: C, 66.17; H, 7.53; N, 9.76 .

Synthesis of I1c', From $0.126 \mathrm{~g}(0.663 \mathrm{mmol})$ of the free amino compound $10 \mathrm{c}^{\prime}(0.178 \mathrm{~g}, 0.816 \mathrm{mmol})$ of di-tert-butyl dicarbonate, and 0.81 mmol of triethylamine in 5 mL of tert-butyl alcohol was obtained after chromatography $0.110 \mathrm{~g}(57.2 \%)$ of the product: $\mathrm{mp} 171-172^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.06\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3, \mathrm{CH}_{3}\right.$), $\left.1.43\left(\mathrm{~s}, 9, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.77(\mathrm{~m}, \mathrm{l}, \mathrm{NCHCH})_{3}\right), 4.17(\mathrm{~d}, J=15.1 \mathrm{~Hz}, \mathrm{l}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.54\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.97(\mathrm{~m}, 1, \mathrm{COCHNH}), 5.04$ (br s, $1, \mathrm{NH}$), $7.30(\mathrm{~m}, 5, \mathrm{ArH}),{ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 13.5,28.3,44.4$, $54.0,60.1,80.3,127.9,128.3,128.9,135.5,155.1,166.3 ; \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\nu 1712,1749 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}=+40.52^{\circ}\left(c \mathrm{c} .15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 66.19 ; \mathrm{H}, 7.64 ; \mathrm{N}, 9.65$. Found: $\mathrm{C}, 66.31 ; \mathrm{H}, 7.51 ; \mathrm{N}$, 9.72 .

Synthesis of 11 f , Free amino compound $10 \mathrm{f}(0.155 \mathrm{~g}, 0.752 \mathrm{mmol})$ was dissolved in 5 mL of tert-butyl alcohol, and $0.206 \mathrm{~g}(0.99 \mathrm{mmol})$ of di-tert-butyl dicarbonate was added followed by $0.1 \mathrm{~g}(1 \mathrm{mmol})$ of triethylamine. After 3 h the tert-butyl alcohol evaporated; the residue was dissolved in 25 mL of ether, washed twice 10 mL of 0.2 N HCl , and dried by MgSO_{4}. The yield was $0.210 \mathrm{~g}(91 \%)$ of a crude product. Crystallization from n-hexane/ethyl acetate mixture gave 0.110 g of a pure compound: mp 108-109 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (270 MHz) δ $1.43\left(\mathrm{~s}, 9, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.35\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 4.20(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1, \mathrm{COCHNH}), 4.62\left(\mathrm{~s}, 1, \mathrm{CHOCH}_{3}\right), 4.64$ (d, $\left.J=15.1 \mathrm{~Hz}, 1, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.20(\mathrm{br} \mathrm{s}, 1, \mathrm{NH}), 7.32(\mathrm{~m}, 5, \operatorname{ArH}) ;{ }^{13} \mathrm{C}$ NMR $(67 \mathrm{MHz}) \delta 28.3\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 44.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 55.3\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$, 64.1 (d, CHNH), 80.6 (s, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 89.6\left(\mathrm{~d}, \mathrm{CHOCH}_{3}\right), 127.8(\mathrm{~d}, \mathrm{Ph})$, 128.4 (d, Ph), 128.8 (d, Ph), 135.4 (s, Ph), 154.7 (s, NHCO), 164.5 (s, $\mathrm{NCOCH})$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu 1715,1768 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}=-24.96^{\circ}(c 1.15$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: $\mathrm{C}, 62.73 ; \mathrm{H}, 7.24 ; \mathrm{N}, 9.14$. Found: C, 62.81; H, 7.18; N, 9.19 .

Debenzylation of the cis-3-t-BOC-4-methyl Derivative 11c', A solution of $0.075 \mathrm{~g}(0.258 \mathrm{mmol})$ of $11 \mathrm{c}^{\prime}$ in 2 mL of a mixture of THF and tert-butyl alcohol ($9: 1$) was added dropwise to a solution of 0.018 g (2.6 mmol) of Li in 3 mL of ammonia at $-78^{\circ} \mathrm{C}$. After $2 \mathrm{~min}, 0.45 \mathrm{~g}$ of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the ammonia was allowed to evaporate at room temperature. After removal of solvents in vacuo the residue was acidified with diluted hydrochloric acid to $\mathrm{pH} \sim 3$. After several minutes this solution was neutralized with an excess of NaHCO_{3} and was extracted with five $5-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Pure compound was obtained after crystallization from n-hexane/ethyl acetate mixture: mp $185-186^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+55.6^{\circ}\left(c \mathrm{l} .68, \mathrm{CH}_{3} \mathrm{OH}\right)$. Product after the second crystallization (mp 185.5-186 ${ }^{\circ} \mathrm{C}$) had rotation $[\alpha]_{\mathrm{D}}=+56.3^{\circ}\left(c 2.14, \mathrm{CH}_{3} \mathrm{OH}\right)$. It was identical in all respects with authentic material. ${ }^{8}$

Debenzylation of the trans-3-t-BOC-4-methyl Derivative 11c, The same procedure as for the cis isomer was used, starting with 0.148 g (0.51 $\mathrm{mmol})$ of t-BOC derivative and $0.032 \mathrm{~g}(4.60 \mathrm{mmol})$ of lithium. Purification by crystallization gave material identical in all respects with authentic material: ${ }^{8} \mathrm{mp} 134-136^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-64.2^{\circ}(\mathrm{c} 0.85, \mathrm{MeOH})$.

Methyl \boldsymbol{N}-(Thioformyl)glycinate, To an ice-cooled solution of 12.57 $\mathrm{g}(0.10 \mathrm{mmol})$ of glycine methyl ester hydrochloride and 14 mL of triethylamine in 100 mL of methanol was added slowly $10.6 \mathrm{~g}(0.12$ mmol) of ethyl thioformate. The reaction mixture was allowed to warm to room temperature, the methanol was evaporated in vacuo, and the residue was mixed with 100 mL of water and 100 mL of ethyl acetate. The organic layer was washed with $5 \times 50 \mathrm{~mL}$ of water and dried over MgSO_{4}. Evaporation of the solvent gave 9.42 g of a crude product, which was purified by crystallization from CCl_{4} : yield $8.21 \mathrm{~g}(62 \%) ; \mathrm{mp} 45-48$ ${ }^{\circ} \mathrm{C}$; (lit. $.^{21} \mathrm{mp} 46-48{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 3.84\left(\mathrm{~s}, 3, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), $4.45\left(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2, \mathrm{CH}_{2}\right), 7.90(\mathrm{br} \mathrm{s}, 1, \mathrm{NH}), 9.52(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $1, \mathrm{CHS}$).
(21) Pews, R. G.; Pysenko, Z. J. Org. Chem. 1985, 50, 5115.

Preparation of Thiazine $12 .{ }^{10}$ To an ice-cooled solution of $3.28 \mathrm{~g}(24.7$ mmol) of methyl N-(thioformyl)glycinate in 50 mL of THF was added $1.38 \mathrm{~g}(34.5 \mathrm{mmol})$ of 60% dispersion of NaH . After ${ }^{1} / 2 \mathrm{~h}, 3.28 \mathrm{~g}(34.3$ mmol) of chloroacetone was added, The reaction was monitored by TLC chromatography (silica gel, 5% of 2-propanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After 1 h at $0^{\circ} \mathrm{C}, \mathrm{THF}$ was evaporated, the residue decomposed by addition of 50 mL of cold 10% aqueous solution of $\mathrm{K}_{2} \mathrm{HPO}_{4}$, and the product extracted into ethyl acetate. Evaporation of the solvent gave 5.81 g of a crude product consisting of two isomers of the product and unreacted starting material. Dissolving in 10 mL of diethyl ether and cooling to $-15^{\circ} \mathrm{C}$ overnight gave $1.167 \mathrm{~g}(27 \%)$ of a crystalline main isomer. The analytical sample was obtained by crystallization from benzene: mp $100-101.5^{\circ} \mathrm{C}$ (benzene); ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 1.41$ (s, 3, CH_{3}), 2.91 (d, $\left.J=12.6 \mathrm{~Hz}, 1, \mathrm{SCH}_{2}\right), 3.06\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1, \mathrm{SCH}_{2}\right), 3.42(\mathrm{~s}, 1$, OH), 3.84 (s, $3, \mathrm{CO}_{2} \mathrm{CH}_{3}$), $4.20\left(\mathrm{~s}, 1, \mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 8.30(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1, \mathrm{~N}=\mathrm{CHS}$); ${ }^{13} \mathrm{C}$ NMR (67 MHz) $\delta 26.7,34.0,52.3,62.8,66.0,152.9$, 171.5; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu 1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1604(\mathrm{~s}, \mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 44.43 ; \mathrm{H}, 5.86 ; \mathrm{N}, 7.40 ; \mathrm{S}, 16.94$. Found: C, 44.52; H, 5.75; N, 7.42; S, 16.76.

Preparation of Cepham 13. The procedure for $\mathbf{4 b}$, starting from 1.054 $\mathrm{g}(3.03 \mathrm{mmol})$ of the carbene complex and $0.604 \mathrm{~g}(3.19 \mathrm{mmol})$ thiazine 12 in 30 mL of ether, gave, after $24-\mathrm{h}$ irradiation, 1.016 g of crude product after the usual isolation. Pure β-lactam $13(0,893 \mathrm{~g}, 79 \%)$ was obtained after chromatography [Chromatotron, silica gel, n-hexane/ether (1:1)] as a yellowish oil. The product was $\sim 1: 1$ mixture of diastereoisomers (because of the racemic starting thiazine): ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz} \mathrm{)}$ $\delta 0.88\left(\mathrm{~m}, 6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1,33\left(\mathrm{~m}, 5, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.59\left(\mathrm{~s}, 1, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.62-1.80\left(\mathrm{~m}, 1, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 2,63\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1, \mathrm{SCH}_{2 \mathrm{a}}\right), 2.81(\mathrm{~d}$, $\left.J=14.4 \mathrm{~Hz}, 1, \mathrm{SCH}_{2 \mathrm{~b}}\right), 2.92\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1, \mathrm{SCH}_{2 \mathrm{~b}}\right), 3.04(\mathrm{~d}, J=$ $13.8 \mathrm{~Hz}, 1, \mathrm{SCH}_{2 \mathrm{a}}$), $3.23\left(\mathrm{~m}, 1, \mathrm{NCHCH}_{2} \mathrm{O}\right), 3.36\left(\mathrm{br} \mathrm{s}, 1, \mathrm{OH}_{\mathrm{a}}\right), 3.67$ (s, $1, \mathrm{CHCO}_{2} \mathrm{CH}_{3 \mathrm{~b}}$), 3,73 (dd, $J=8.7,4.3 \mathrm{~Hz}, 1, \mathrm{NCHCH}_{2} \mathrm{O}$), 3.80 (s, $3, \mathrm{OCH}_{3 \mathrm{a}}$), 3.82 (dd, $J=7.8,10,2 \mathrm{~Hz}, \mathrm{I}, \mathrm{NCHCH}_{2} \mathrm{O}$), 3.88 (s, 3 , $\left.\mathrm{OCH}_{3 \mathrm{~b}}\right), 4.07\left(\mathrm{~s}, 1, \mathrm{OH}_{\mathrm{b}}\right), 4.22\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1, \mathrm{COCH}_{\mathrm{a}}\right), 4.27(\mathrm{~d}, J$
$\left.=1,6 \mathrm{~Hz}, 1, \mathrm{COCH}_{\mathrm{b}}\right), 4.47\left(\mathrm{~s}, 1, \mathrm{CHCO}_{2} \mathrm{CH}_{3 \mathrm{~b}}\right), 4.55\left(\mathrm{br} \mathrm{s}, 1, \mathrm{NCHS}_{\mathrm{b}}\right)$, 4.78 (d, $J=1.4 \mathrm{~Hz}, 1, \mathrm{NCHS}_{\mathrm{a}}$); IR (film) $\nu 1734$ (s, $\mathrm{C}=\mathrm{O}$), 1760 (s, $\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{SO}_{5} ; \mathrm{C}, 54,82 ; \mathrm{H}, 7.58 ; \mathrm{N}, 7.52$; S, 8.61. Found: C, $54.72 ; \mathrm{H}, 7.46 ; \mathbf{N}, 7.40 ;$ S, 8.83 .

Synthesis of 14. The reaction of carbene complex 4 ($191 \mathrm{mg}, 0.500$ mmol) and the N-benzyl imine of m-methoxybenzaldehyde (138 mg , 0.550 mmol) in acetonitrile (22 mL) gave 262 mg of an orange oil after 24 h of irradiation. The product was purified by chromatography [preparative TLC, hexane/EtOAc (1:1)] to yield $21 \mathrm{mg}(0.045 \mathrm{mmol}$, 9%) of a trans (14a) isomer and $97 \mathrm{mg}(0.21 \mathrm{mmol}, 41 \%)$ of a $1: 1$ mixture of two cis (14b) isomers. trans-14a: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.41\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.46\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.38(\mathrm{dd}, J=2.3$, $8.6 \mathrm{~Hz}, 1, \mathrm{CHCHC}=\mathrm{O}$), 3.71 (dd, $J=4.1,6.9 \mathrm{~Hz}, 1, \mathrm{OCH}_{2} \mathrm{CHN}$), 3.80 $\left(\mathrm{s}, 3, \mathrm{OCH}_{3}\right), 3.90(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1, \mathrm{CHPh}), 3.99(\mathrm{~d}, J=2,3 \mathrm{~Hz}, 1$, $\mathrm{CHC}=0), 4.30\left(\mathrm{~m}, 2, \mathrm{OCH}_{2} \mathrm{CHN}\right), 4.45(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1, \mathrm{CHPh})$, 5.88 (dd, $J=8.6,15.8 \mathrm{~Hz}, 1, \mathrm{CH}=\mathrm{CHPh}), 6.13(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1$, $\mathrm{CH}=\mathrm{CHPh}), 6.8(\mathrm{~m}, 2, \mathrm{ArH}), 7.0(\mathrm{~m}, 2, \mathrm{ArH}), 7.3(\mathrm{~m}, 10, \mathrm{ArH})$. cis-14b: ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta 1.29\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.39$ (s, 3, CH_{3}), $1.46\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.55\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.64-3.79(\mathrm{~m}, 4), 3.80$ $\left(\mathrm{s}, 3, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.91(\mathrm{dd}, J=4.6,9.2 \mathrm{~Hz}, 1$, $\mathrm{CHCHC}=0), 3.97(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1, \mathrm{CHC}=\mathrm{O}), 4.02(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1, \mathrm{CHC}=0), 4.10(\mathrm{~m}, 2), 4.24-4.41(\mathrm{~m}, 4), 4.44(\mathrm{dd}, J=4.4,8.3 \mathrm{~Hz}$, $1, \mathrm{CHCHC}=\mathrm{O}), 5.48(\mathrm{dd}, J=9.2,15.9 \mathrm{~Hz}, 1, \mathrm{CH}=\mathrm{CHPh}), 5.95(\mathrm{dd}$, $J=8.3,16.0 \mathrm{~Hz}, \mathrm{I}, \mathrm{CH}=\mathrm{CHPh}), 6.15(\mathrm{~d}, J=16.0 \mathrm{~Hz}, \mathrm{l}, \mathrm{CH}=\mathrm{CHPh})$, $6.25(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1, \mathrm{CH}=\mathrm{C} H \mathrm{Ph}), 6.61-7.51(\mathrm{~m}, 28, \mathrm{ArH})$. These compounds were not further purified.

Acknowledgment, Support for this research under Grant 2ROI GM26178-11 from the National Institutes of General Medical Sciences (Public Health Service) is gratefully acknowledged, R.I. thanks the Schweizerischer Nationalfondszur Foerderung der Wissenschafthchen Forschung for financial support.

Intersystem Crossing to both Ligand-Localized and Charge-Transfer Excited States in Mononuclear and Dinuclear Ruthenium(II) Diimine Complexes

John R. Shaw, Ralph T, Webb, and Russell H, Schmehl*
Contribution from the Department of Chemistry, Tulane University, New Orleans, Louisiana 70118. Received September 6, 1988

Abstract

The unsaturated bridging ligand 1,4 -bis [2-(4'-methyl-2,2'-bipyrid-4-yl)ethenyl]benzene (dstyb) was prepared in a simple two-step sequence. The ruthenium complexes $\left\{\left[(\mathrm{dmb})_{2} \mathrm{Ru}\right]_{n}(\mathrm{dstyb})\right\}^{2 n+}(n=1,2 ; \mathrm{dmb}=4,4$-dimethyl-2,2'-bipyridine) were prepared, and their redox and photophysical properties were examined, Both complexes have a single oxidation in cyclic voltammetry at 1.10 V vs SSCE, for the dinuclear complex $n=2$. The first one-electron reductions are localized on the dstyb ligand and occur at $-1,32$ and $-1,26 \mathrm{~V}$ for the mononuclear and dinuclear complexes, respectively. The emission maximum in room-temperature $\mathrm{CH}_{3} \mathrm{CN}$ is 680 nm for $\left[(\mathrm{dmb})_{2} \mathrm{Ru}(\mathrm{dstyb})\right]^{2+}$ and 720 nm for $\left\{\left[(\mathrm{dmb})_{2} \mathrm{Ru}\right]_{2}(\mathrm{dstyb})\right\}^{4+}$, For both complexes emission quantum yields are <0.005, and luminescence lifetimes are 622 ns for the monomer and $2,02 \mu \mathrm{~s}$ for the dimer at room temperature. The very low radiative decay rates ($\phi_{\mathrm{em}} / \tau$) observed result from low intersystem crossing efficiencies for population of the emitting ${ }^{3}$ MLCT state. Transient absorption spectra of the two complexes provide evidence for the presence of $\mathrm{a}^{3}\left(\pi \rightarrow \pi^{*}\right)$ state. In the mononuclear complex the lifetime of the $\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$ absorbance of the ${ }^{3}\left(\pi \rightarrow \pi^{*}\right)$ state is $1.6 \mu \mathrm{~s}$, much longer than the emission lifetime, The ${ }^{3}$ MLCT emission and the ${ }^{3}\left(\pi \rightarrow \pi^{*}\right)$ absorption lifetimes of the dinuclear complex are within experimental error, indicating the states are equilibrated. Quenching of the transient absorbance with a series of triplet quenchers provides a measure of the triplet energy of the ${ }^{3}\left(\pi \rightarrow \pi^{*}\right)$ state of the complexes.

There has been considerable recent interest in the photochemical and photophysical properties of binuclear and multinuclear transition-metal complexes having bridging ligands that allow varying degrees of electronic interaction between the coupled metal centers, ${ }^{1-11}$ Complexes of this type are of interest as potential

[^4]chromophores for multielectron photoredox processes. Studies of coupled ruthenium(II) diimine complexes have shown that the
(3) (a) Rillema, D. P.; Mack, K. B. Inorg. Chem. 1982, 21, 3849. (b) Rilleam, D. P.; Callahan, R. W.; Mack, K. B. Inorg. Chem. 1982, 21, 2589. (c) Sahai, R.; Morgan, L.; Rillema, D. P. Inorg. Chem. 1988, 27, 3495. (4) (a) Wacholtz, W. F.; Auerbach, R. A.; Schmehl, R. H.; Elliott, C. M.; Freitag, R. F. Inorg. Chem. 1986, 25, 2440. (b) Wacholtz, W. F.; Auerbach, R. A.; Schmehl, R. H. Inorg. Chem. 1987, 26, 2989. (c) Schmehl, R. H.; Auerbach, R. A.; Wacholtz, W. F. J. Phys. Chem. 1988, 92, 6202. (d) Ryu, C. K.; Schmehl, R. H. J. Phys. Chem., in press.

[^0]: (1) (a) Hegedus, L. S.; McGuire, M. A.; Schultze, L. M.; Yijun, C.; Anderson, O. P. J. Am. Chem. Soc. 1984, 106, 2680. (b) Hegedus, L. S.; Schultze, L. M.; Toro, J.; Yijun, C. Tetrahedron 1985, 41, 5833.
 (2) Durkheimer, W.; Blumbach, J.; Lattrell, R.; Scheunemann, K. H. J. Angew. Chem., Int. Ed. Engl. 1985, 24, 180.
 (3) Imwinkelreid, R.; Hegedus, L. S. Organometallics 1988, 7, 702.
 (4) Borel, C.; Hegedus, L. S.; Krebs, J.; Satoh, Y. J. Am. Chem. Soc. 1987, 109, 1101.
 (5) Hegedus, L. S.; D'Andrea, S. J. Org. Chem. 1988, 53, 3113.
 (6) Copola, G. M.; Schuster, H. F. Asymmetric Synthesis-Construction of Chiral Molecules using Amino Acids; John Wiley \& Sons: New York, 1987.

[^1]: (9) Mattingly, P. G.; Miller, M. J. J. Org. Chem. 1980, 45, 410.

[^2]: (10) Hashimoto, T.; Watanabe, T.; Kawano, Y.; Tanaka, T.; Miyadera, T. Heterocycles 1978, $11,207$.

[^3]: (19) Enders, E.; Fey, P.; Kipphardt, H. Org. Synth. 1987, 65, 173.

[^4]: (1) Hunziker, M.; Ludi, A. J. Am. Chem. Soc. 1977, 99, 7370
 (2) Braunstein, C. H.; Baker, A. D.; Strekas, T. C.; Gafney, H. D. Inorg. Chem. 1984, 23, 857. (b) Fuchs, Y.; Lofters, S.; Dieter, T.; Shi, W.; Morgan, R.; Strekas, T. C.; Gafney, H. D.; Baker, A. D. J. Am. Chem. Soc. 1987, 109, 2691.

